A novel single excitation dual-emission carbon dots for colorimetric and ratiometric fluorescent dual mode detection of Cu^{2+} and Al^{3+} ions

Jinping Song ^a, Qi Ma ^{a,*}, Yequn Liu ^{b,*}, Yong Guo ^a, Feng Feng ^a, Shaomin Shuang ^c,

^a College of Chemistry and Environmental Engineering, and Institute of Applied Chemistry, Shanxi Datong University, Datong, Shanxi, 037009, China.

^b Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

^c Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China

Raw materials	Reaction medium	$\lambda_{em} (nm)$	Φ
Green Tea	water	403	2.53% (blue band)
	formamide	409	10.86% (blue band)
	ethanol	<i>ca.</i> 470, 671, 715	3.57% (red band)
	acetone	<i>ca.</i> 470, 671, 715	4.72% (red band)
Red Tea	water	420	3.78% (blue band)
	formamide	408	4.41% (blue band)
	ethanol	<i>ca.</i> 470, 671, 715	4.48% (red band)
	acetone	<i>ca.</i> 470, 671, 715	5.47% (red band)
Dark Tea	water	418	2.96% (blue band)
	formamide	415	9.57% (blue band)
	ethanol	ca.472, 671, 715	3.84% (red band)
	acetone	ca.478, 671, 715	4.20% (red band)

Table S1. The emission peak position and quantum yield of D-CDs prepared from

 different raw materials under different reaction medium.

Raw materials	Temperature (°C)	Reaction time	Φ (red band)
Red Tea	140	2 h	4.88%
	160	2 h	4.90%
	180	2 h	5.47%
	200	2 h	4.79%
	180	1 h	6.06%
	180	2 h	5.47%
	180	3 h	4.80%
	180	4 h	5.20%
	180	5 h	4.33%
	180	6 h	4.11%
	180	7 h	4.45%
	180	8 h	4.85%

 Table S2. The optimization of synthetic conditions.

 Table S3. Quantum yield of red emission band of D-CDs in different solvents.

	DMSO	Ethanol	Acetone	Water	DMF	Acetonitrile	THF	CH_2Cl_2
η	1.48	1.36	1.36	1.33	1.333	1.343	1.405	1.424
Φ	7.72%	5.53%	6.06%	0.35%	8.93%	5.83%	6.26%	5.86%

Table S4. Rate constant of D-CDs in ethanol solution in the absence and presence of

	111 10113 (Mex + 10 mm), Mem + 701	
	D-CDs	D-CDs+Al ³⁺
Φ /% (blue band)	0.80	8.01
τ / ns	3.83	4.80
$k_{ m r}$ / 10 ⁶ s ⁻¹	2.09	16.69
$k_{\rm nr}$ / 10 ⁸ s ⁻¹	2.59	1.92

Al³⁺ ions ($\lambda_{ex} = 410 \text{ nm}, \lambda_{em} = 478 \text{ nm}$)

Fig. S1 FL emission spectra of carbon dots obtained in different solvents.

Fig. S2 CIE chromaticity diagram of D-CDs at different excitation wavelengths.

Fig. S3 The FL spectra of D-CDs ($\lambda_{ex} = 410$ nm) in ethanol in the absence and presence of Al³⁺ and Cu²⁺ ions.

Fig. S4 CIE chromaticity diagram of D-CDs in the absence and presence of Cu^{2+} and

Al³⁺ ions.

Fig. S5 Effect of reaction time on fluorescence intensity of the blue-band of D-CDs in the presence of Al^{3+} .

Fig. S6 Effect of reaction time on fluorescence intensity of the red-band of D-CDs in the presence of Cu^{2+} .

Fig. S7 The UV absorption spectra of Al^{3+} (red curve) and Cu^{2+} (black curve), and the FL emission spectra of D-CDs in the absence and presence of Al^{3+} and Cu^{2+} .

Fig. S8 Particle size distribution profiles of D-CDs in ethanol solution in the absence and presence of different metal ions.

Fig. S9 Time-resolved FL decay curves of D-CDs ethanol solution in the absence and presence of Cu^{2+} ($\lambda_{ex} = 410$ nm, $\lambda_{em} = 670$ nm).

Fig. S10 Time-resolved FL decay curves of D-CDs ethanol solution in the absence and presence of Al^{3+} ($\lambda_{ex} = 410$ nm, $\lambda_{em} = 470$ nm).

Fig. S11 The FL emission spectra of D-CDs in aqueous solution and 25% glycerol solution.