Supporting information for

An efficient and thermally stable dye-sensitized solar cell based on smectic thiolate/disulfide

electrolyte and carbon/PEDOT composite nanoparticle electrode

Caihong Wang, Xueyong Li, Yong Wu and Shuai Tan*

School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu

610065, China.

*To whom correspondence should be sent: tanshuai@scu.edu.cn

1. Mesomorphic properties of the electrolytes	S2
2. Volatility of the electrolytes	S4
3. Cyclic voltammograms of the electrolytes	S5
4. The images of the prepared electrode and DSSCs	S6
5. The morphology of the carbon electrode	S7
6. EDS measurement	S8
Reference	S8

1. Mesomorphic properties of the electrolytes

Mesomorphism of the electrolytes was characterized by differential scanning calorimetry (DSC), polarizing optical microscope (POM) observations and small angle X-ray scattering (SAXS) analyses. Multiple peaks in the DSC traces of $C_{12}T_{add}$ indicated appearance of mesophases (**S-Figure 1a**). Mesophase type was assigned based on the POM textures. The characteristic focal conic textures (inset of **S-Figure 1a**) indicated the S_A liquid crystal phase of $C_{12}T_{add}$.

S-Figure 1 (a) DSC traces of $C_{12}T_{add}$ during the second heating process (C: crystal, S_A : smectic A phase, I: isotropic liquid) and POM observation of $C_{12}T_{add}$ at 30 °C; (b) SAXS patterns of $C_{12}T_{add}$ at 30 °C and the proposed molecular arrangement of $C_{12}T_{add}$

Temperature dependent SAXS measurements of $C_{12}T_{add}$ confirmed the presence of the S_A phase. A sharp peak centered at q=1.91 nm⁻¹ appeared in the SAXS pattern of $C_{12}T_{add}$ at 30 °C (**S-Figure 1b**), which indicated a lamellar structure with an interlayer spacing of 3.29 nm. As we described previously,¹ the undoped $C_{12}T$ formed a bilayer structure and the interlayer spacing of $C_{12}T$ obtained from SARX measurement was 3.24 nm. The interlayer spacing of smectic $C_{12}T_{add}$ was slightly higher than that of undoped smectic $C_{12}T$. This fact suggested that smectic $C_{12}T_{add}$ also formed a bilayer structure wherein the T_2 and the additives should be intercalated between smectic layers as proposed in the inset of S-Figure 1b. The layered assembly of the T^2/T_2 redox formed ordered pathways for efficient charge transport.

2. Volatility of the electrolytes

The volatility of the electrolytes were determined using a gravimetric method. The electrolytes were placed in a vacuum oven at 40 °C and weighted at specific time to obtained the weight change. The normalized weight of $C_{12}T_{add}$ as a function of time is shown in **S-Figure 2**. The weight loss of $C_{12}T_{add}$ was less than 0.5% after 55 h at 40 °C under vacuum, indicating a non-volatile property of the liquid crystal electrolyte.

S-Figure 2 Normalized weight of $C_{12}T_{add}$ as a function of time at 40 °C under vacuum

3. Cyclic voltammograms of the electrolytes

Diffusion coefficient (*D*) of the electrolyte was determined from the limited current (J_{lim}) obtained by CV measurement (scanning rate: 10 mV s⁻¹) using a symmetric cell as described in the literature¹. The symmetric cell was prepared by sandwiching the electrolyte between two carbon/PEDOT composite electrodes. Temperature of the symmetric cell was controlled by a hot stage. The measured CV curves of the electrolyte at 30 °C are shown in **S-Figure 3.** The relationship between *D* and J_{lim} is described by Eq. (S-1).

$$J_{\rm lim} = \frac{2ne_0 DCN_A A}{l} \tag{S-1}$$

Where *n*, e_0 , *C*, N_A , *l* and *A* denote the number of electrons transferred in the reaction (*n*=2), the elementary charge (e_0 =1.6×10⁻¹⁹ C), the charge carrier concentration (mol L⁻¹), the Avogadro constant (N_A =6.02×10²³ C), the distance between electrodes and the active area of the interface between the electrodes and electrolyte, respectively.

S-Figure 3 Cyclic voltammogram curves of the symmetric cells containing $C_{12}T$ and

4. The images of the prepared electrode and DSSCs

S-Figure 4 images of the prepared electrodes (a), DSSCs (b) and symmetric cells (c) the for

the electrochemical measurement

5. The morphology of the carbon electrode

S-Figure 5 SEM image of the top-surface of the carbon electrode

6. EDS measurement

S-Figure 6 SEM image of the top-surface of the carbon/PEDOT electrode (a) and EDS mapping images of sulfur (b), carbon (c) and oxygen (d) elements.

Reference

- 1 Tan, S.; Zhao, Z.; Wang, S.; Wu. Y. A thiolate/disulfide liquid crystalline electrolyte for dye-sensitized solar cells: Promotion of the Grotthuss-type charge transport through lamellar nanostructures. *Electrochim. Acta* 2018, 288, 165-172.
- 2 Berginc, M.; Krašovec, U. O; Jankovec, M.; Topič, M. The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte. *Sol. Energ. Mater. Sol. C.*, 2007, 91, 821-828.