Supplementary Information

Development of an intramolecular charge transfer-type colorimetric and fluorescence sensor for water by fusion with juloidine structure and complexation with boron trifluoride

Keiichi Imato, Toshiaki Enoki and Yousuke Ooyama*

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University,

Higashi-Hiroshima, 739-8527, Japan.

Fax: +81 824 24 5494; Tel: +81 824 24 7689; E-mail:yooyama@hiroshima-u.ac.jp

Fig. S1 (a) Photoabsorption and (b) fluorescence spectra of ET-1-BF₃ ($c = 2.0 \times 10^{-5}$ M) in acetonitrile containing 0.0146–1.9 wt% of water. Prior to the measurements, the solutions were stored in the dark for 2 days after addition of water. Peak intensities of (c) absorption bands at around 360 and 430 nm and (d) fluorescence bands at around 420 and 510 nm ($\lambda^{ex} = 302$ nm) in acetonitrile solutions of ET-1-BF₃ with 0.0146–1.9 wt% of water.

Fig. S2 Results of another solution for demonstration of reproducibility. (a) Photoabsorption spectra of **ET-1-BF₃** ($c = 2.0 \times 10^{-5}$ M) in acetonitrile containing (a) 0.0288–80 wt%, (b) 0.0288–9.7 wt%, and (c) 9.7–80 wt% of water. Fluorescence spectra of **ET-1-BF₃** ($c = 2.0 \times 10^{-5}$ M, $\lambda^{\text{ex}} = 302$ nm) in acetonitrile containing (d) 0.0288–80 wt%, (e) 0.0288–9.7 wt%, and (f) 9.7–80 wt% of water.

Fig. S3 Results of another solution for demonstration of reproducibility. Peak intensities of photoabsorption bands at around 360 and 430 nm in acetonitrile solutions of **ET-1-BF₃** with (a) 0.0288–80 wt%, (b) 0.0288–5.6 wt%, (c) 5.6–18 wt%, and (d) 5.6–80 wt% of water. Peak intensities of fluorescence bands at around 420 and 510 nm ($\lambda^{ex} = 302$ nm) in acetonitrile solutions of **ET-1-BF₃** with (e) 0.0288–80 wt%, (f) 0.0288–5.6 wt%, (g) 5.6–18 wt%, and (h) 5.6–80 wt% of water.

Fig. S4 ¹H NMR spectrum of ET-1-BF₃ (CD₃CN).

Fig. S5 ¹³C NMR spectrum of **ET-1-BF₃** (CD₃CN).

Fig. S6 ¹¹B NMR spectrum of ET-1-BF₃ (CD₃CN).