Supplementary Information

Development of an intramolecular charge transfer-type colorimetric and fluorescence sensor for water by fusion with juloidine structure and complexation with boron trifluoride

Keiichi Imato, Toshiaki Enoki and Yousuke Ooyama*

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan.

Fax: +81 82424 5494; Tel: +81 82424 7689; E-mail:yooyama@hiroshima-u.ac.jp

Fig. S1 (a) Photoabsorption and (b) fluorescence spectra of ET-1-BF $\mathbf{3}_{\mathbf{3}}\left(c=2.0 \times 10^{-5} \mathrm{M}\right)$ in acetonitrile containing $0.0146-1.9 \mathrm{wt} \%$ of water. Prior to the measurements, the solutions were stored in the dark for 2 days after addition of water. Peak intensities of (c) absorption bands at around 360 and 430 nm and (d) fluorescence bands at around 420 and 510 nm ($\lambda^{\mathrm{ex}}=302 \mathrm{~nm}$) in acetonitrile solutions of ET-1-BF ${ }_{3}$ with $0.0146-1.9 \mathrm{wt} \%$ of water.

Fig. S2 Results of another solution for demonstration of reproducibility. (a) Photoabsorption spectra of

ET-1-BF $\mathbf{B}_{3}\left(c=2.0 \times 10^{-5} \mathrm{M}\right)$ in acetonitrile containing (a) $0.0288-80 \mathrm{wt} \%$, (b) $0.0288-9.7 \mathrm{wt} \%$, and (c) $9.7-80 \mathrm{wt} \%$ of water. Fluorescence spectra of ET-1-BF $3\left(c=2.0 \times 10^{-5} \mathrm{M}, \lambda^{\mathrm{ex}}=302 \mathrm{~nm}\right)$ in acetonitrile containing (d) $0.0288-80 \mathrm{wt} \%$, (e) $0.0288-9.7 \mathrm{wt} \%$, and (f) $9.7-80 \mathrm{wt} \%$ of water.

Fig. S3 Results of another solution for demonstration of reproducibility. Peak intensities of photoabsorption bands at around 360 and 430 nm in acetonitrile solutions of ET-1-BF $\mathbf{3}_{\mathbf{3}}$ with (a) $0.0288-80 \mathrm{wt} \%$, (b) $0.0288-5.6 \mathrm{wt} \%$, (c) $5.6-18 \mathrm{wt} \%$, and (d) $5.6-80 \mathrm{wt} \%$ of water. Peak intensities of fluorescence bands at around 420 and $510 \mathrm{~nm}\left(\lambda^{\mathrm{ex}}=302 \mathrm{~nm}\right)$ in acetonitrile solutions of ET-1-BF \mathbf{B}_{3} with (e) $0.0288-80 \mathrm{wt} \%$, (f) $0.0288-5.6 \mathrm{wt} \%$, (g) $5.6-18 \mathrm{wt} \%$, and (h) $5.6-80 \mathrm{wt} \%$ of water.

Fig. $\mathbf{S 4}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{E T}-1-\mathrm{BF}_{3}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$.

Fig. $\mathbf{S 5}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{E T}-\mathbf{1}-\mathrm{BF}_{3}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$.

Fig. $\mathbf{S 6}^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{E T} \mathbf{- 1}-\mathrm{BF}_{\mathbf{3}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$.

