Supplementary data

Enhanced removal of fluoride by zirconium modified tea waste with extrusion treatment: kinetics and mechanism

Liping Mei¹, Chuanyi Peng¹, Huanhuan Qiao, Fei Ke, Ruyan Hou, Huimei Cai*,

Xiaochun Wan*

School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Hefei 230036, Anhui, People's Republic of China

1. Liping Mei and Chuanyi Peng contributed equally to this work

*Corresponding author:

E-mail: hml20@sina.com (H. Cai)

xcwan@ahau.edu.cn (X. Wan)

Postal address: No.130 Changjiangxi Road, Hefei, Anhui, P.R. China, 230036

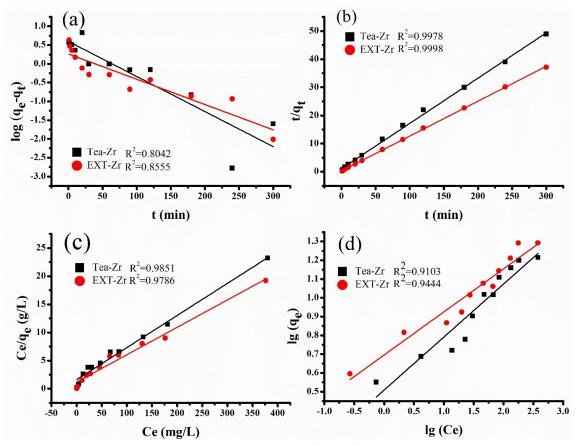


Fig. S1. The pseudo-first order kinetic model (a), pseudo-second order kinetic model (b), Langmuir isotherm (c) the Freundlich isotherm (d) for fluoride adsorption by tea waste with zirconium (Tea-Zr) and extruded with zirconium (EXT-Zr).

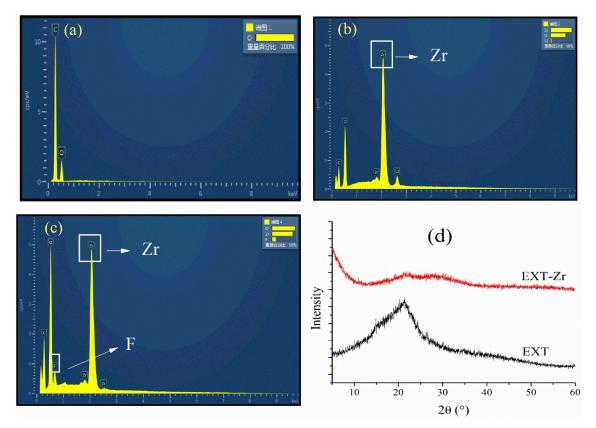


Fig S2. EDS spectra of the EXT (a), EXT-Zr (b) and EXT-Zr-F (c) and X-ray diffractometry (XRD) of EXT (black, below) and EXT-Zr (red, above) (d).

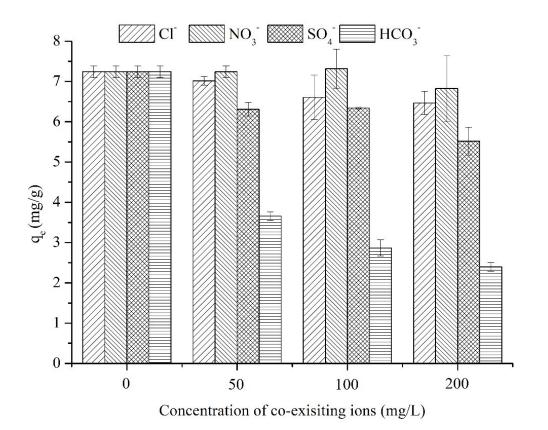


Fig. S3. The effects of co-existing ions in the aqueous solution on the fluoride adsorption capacity (qe) of the EXT-Zr.

Samples	Atomic ratio %				
	С	О	Zr	F	Total
EXT	78.01	21.99	0	0	100
EXT -Zr	62.43	31.55	6.02	0	100
EXT -Zr-F	59.6	32.6	5.8	2	100

Table S1. Elemental concentrations on the surfaces of EXT, EXT-Zr and EXT-Zr-F obtained from XPS analysis.