Supporting Information

Improved Pseudocapacitive Charge Storage in Highly Ordered Mesoporous TiO₂/Carbon Nanocomposites as High-Performance Li-Ion Hybrid Supercapacitor Anodes

Yujin Lee,^a Seoa Kim,^a Jeong Han Lee,^b Kwang Chul Roh,^b Eunho Lim,^{*c} and Jinwoo Lee^{*a}

^aDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea ^bEnergy and Environmental Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, Gyeongnam 52851, Republic of Korea ^cCarbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea

E-mail: <u>eunholim@krict.re.kr</u> and jwlee1@kaist.ac.kr

Figure S1. SEM image of com-TiO₂.

Figure S2. (a) Comparison of capacity retention of TiO_2 electrodes at different currents from 0.05 to 5 A g⁻¹. (c) Galvanostatic charge-discharge profiles of com-TiO₂ at various currents from 0.05 to 5 A g⁻¹.

Figure S3. Comparison of rate capability on m-TiO₂-C and previously reported results.

Figure S4. Cycle performance of m-TiO₂-C at a current of 3 A g⁻¹.

Figure S5. CV curves of com-TiO₂ at different sweep rates of 0.1-1.0 mV s⁻¹.

Figure S6. b values of m-TiO₂-C plotted as a function of potential for cathodic sweeps.

Figure S7. Galvanostatic charge-discharge profiles of MSP-20 at 0.05 A g⁻¹.

Figure S8. Galvanostatic charge-discharge profiles of the Li-HSC at different currents from (a) 0.3 to 1 A g^{-1} and from (b) 3 to 5 A g^{-1} .

Sample		Energy	Power	Voltage range		
Anode	Cathode	(W h kg ⁻¹)	(W kg-1)	(V)	Electrolyte	Ref.
m-TiO ₂ -C	AC	~63	~4,044	0-3.0	1.0 M LiPF ₆ in EC/DMC	This work
C-LTO	AC	~36	~1,500	1.5 – 2.5	1.0 M LiPF ₆ in PC	[51]
TNW	CNT	~13	~1,300	0-2.8	1.0 M LiPF ₆ in EC/DMC	[52]
TiO ₂ -B nanorod	AC	~23	~2,800	0-2.8	1.0 M LiPF ₆ in EC/DMC	[53]
H-TiO ₂ -PPy- SCNT	AC	~31	~4,000	1.0 - 3.0	-	[43]
RuO ₂ /TiO ₂ nanotube	AC	~13	~1,200	0-1.4	1.0 M KOH	[54]

 Table S1. Comparison of electrochemical performances of Li-HSC using m-TiO₂-C (this work) with other Li-HSC results previously reported.