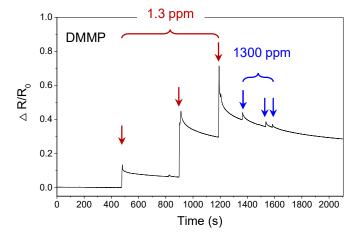
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting information

Graphene chemiresistors modified with functionalized triphenylene for highly sensitive and selective detection of dimethyl methylphosphonate

Yun-Tae Kim, a Seongwoo Lee, b Sanghwan Park, and Chang Young Lee*a

^aSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea


^bSchool of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

*Corresponding authors: cylee@unist.ac.kr

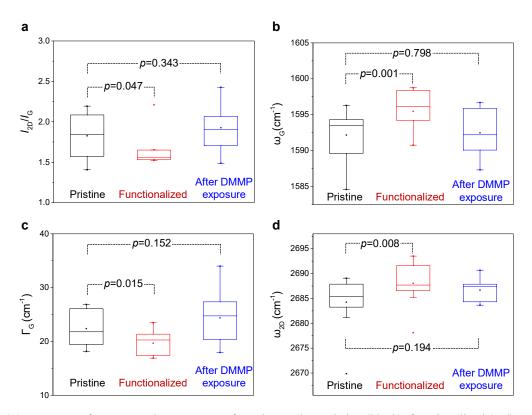

Fig. S1. Synthesis of N-substituted triphenylene. Refer to Ref. 14 for details.

Fig. S2. I_{2D}/I_G ratio before and after the functionalization. The decreased I_{2D}/I_G ratio by the functionalization implies n- or p-doping of graphene.

Fig. S3. Responses to DMMP at a high concentration (1300 ppm) after partially irreversible responses at a low concentration (1.3 ppm).

Figure S4. Recovery of Raman peak parameters of graphene when pristine (black), functionalized (red), and after the exposure to DMMP (blue). (a) 2D/G intensity ratio (I_{2D}/I_G). (b) Peak positions of G peak (ω_G). (c) FWHM of G peak (Γ_G). (d) Peak positions of 2D peak (ω_{2D})