Supporting Information

Figure S1	Synthesis of benzimidazole ligand L
Figure S2	ATR spectra of a) L, b) 1, c) $\mathbf{2}$ and d) 3.
Figure S3	ESI-MS(+) spectrum of 3.
Figure S4	Absorption spectra of complexes (a) 1, (b) 2 and (c) 3 in DMF.
Figure S5	TG and DTG curves of complexes 1-3.
Figure S6	Calculated electronic spectra of the complexes studied here (a) 1, (b) 2 and (c) 3 CAM-B3LYP/LANL2DZ method.
Figure S7	Selected FMO orbitals of mononuclear analogue of 1.
Figure S8	Selected FMO orbitals of mononuclear analogue of 2.
Figure S9	Selected FMO orbitals of mononuclear analogue of 3.
Table S1	Selected bond lengths (A), and angles (${ }^{\circ}$) for 1-3 obtained at the B3LYP/LANL2DZ theory level.
Table S2	Selected Mulliken charge values of the mononuclear models of 1-3.

Figure S1 Synthesis of benzimidazole ligand L. [15]

a)

b)

c)

d)

Figure S2 ATR spectra of a) L, b) 1, c) $\mathbf{2}$ and d) $\mathbf{3}$.

Figure S3 ESI-MS(+) spectrum of 3.

Figure S4 Absorption spectra of complexes (a) 1, (b) $\mathbf{2}$ and (c) $\mathbf{3}$ in DMF.

Figure S5 TG and DTG curves of complexes 1-3.

Figure S6 Calculated electronic spectra of the complexes studied here (a) 1, (b) $\mathbf{2}$ and (c) $\mathbf{3}$ CAMB3LYP/LANL2DZ method.

Figure S7 Selected FMO orbitals of mononuclear analogue of 1.

Figure S8 Selected FMO orbitals of mononuclear analogue of $\mathbf{2}$.

Figure S9 Selected FMO orbitals of mononuclear analogue of 3

Table S1 Selected bond lengths (A), and angles $\left(^{\circ}\right.$) for 1-3 obtained at the B3LYP/LANL2DZ theory level.

1		2		3	
Bond length (A°)	Bond angle (${ }^{\circ}$)	Bond length (A°)	Bond angle (${ }^{\circ}$)	Bond length (A°)	Bond angle(${ }^{\circ}$)
$\mathrm{Co}-\mathrm{N} 1=2.277$	$\begin{aligned} & \text { N2-Co-N67 }=169.85 \\ & \text { N1-Co-N69 }=175.99 \\ & \text { N68-Co-N70 }=173.19 \\ & \text { N68-Co-N67 }=81.99 \end{aligned}$	$\mathrm{Ni}-\mathrm{N} 1=3.165$	$\begin{aligned} & \mathrm{N} 68-\mathrm{Ni}-\mathrm{N} 67=83.23 \\ & \mathrm{~N} 1-\mathrm{Ni}-\mathrm{N} 69=167.55 \\ & \mathrm{~N} 2-\mathrm{Co}-\mathrm{N} 67=159.69 \\ & \mathrm{~N} 68-\mathrm{Co}-\mathrm{N} 70=175.82 \end{aligned}$	$\mathrm{Cu}-\mathrm{N} 1=2.132$	N1-Cu-N2=79.76 N49-Cu-N50=80.86 N1-Cu-N49=100.57
$\mathrm{Co}-\mathrm{N} 2=1.998$	N2-Co-N70 = 89.27	$\mathrm{Ni}-\mathrm{N} 2=1.951$	N2-Ni-N70 89.63	$\mathrm{Cu}-\mathrm{N} 2=1.973$	$\mathrm{O} 22-\mathrm{Cu}-\mathrm{N} 2=88.24$
Co-N67 $=1.997$	N69-Co-N67 $=87.96$	Ni-N67 $=1.974$	N69-Ni-N67=90.45	$\mathrm{Cu}-\mathrm{N} 49=2.005$	O52-Cu-N1=115.65
Co-N68 $=1.991$	N1-Co-N68 $=89.11$	$\mathrm{Ni}-\mathrm{N} 68=1.928$	N1- Ni -N68=94.016	$\mathrm{Cu}-\mathrm{N} 50=2.079$	O52-Cu-N50=118.82
Co-N69 $=2.222$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2=77.21$	$\mathrm{Ni}-\mathrm{N} 69=2.377$	$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 2=68.30$	$\mathrm{Cu}-\mathrm{O}=2.191$	O52-Cu-N49=88.53
$\mathrm{Co}-\mathrm{N} 70=2.005$		Co-N70 $=1.937$			N50-Cu-N2=101.78

Table S2 Selected Mulliken charge values of the mononuclear models of 1-3.

1		$\mathbf{2}$		$\mathbf{3}$	
$N(1)$	-0.155821	$N(1)$	-0.100372	$N(1)$	-0.269480
$N(2)$	-0.281633	$N(2)$	-0.343720	$N(2)$	-0.380299
$N(67)$	-0.220799	$N(67)$	-0.223615	$N(49)$	-0.305435
$N(68)$	-0.223691	$N(68)$	-0.254231	$N(50)$	-0.291107
$N(69)$	-0.172202	$N(69)$	-0.133946	$\mathrm{O}(52)$	-0.713220
$N(70)$	-0.234979	$N(70)$	-0.280498	$\mathrm{Cu}(I I)$	0.711931
$\mathrm{Co}(\mathrm{II})$	0.430933	$\mathrm{Ni}(\mathrm{II})$	0.464320		

