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Fig. S1. The SEM images of Cu foam (A, B) and Ni mesh (C, D) before use. The SEM images of Ni 
foam (E, F) and SS mesh (G, H) after the stability test.
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Fig. S2. The Survey XPS spectra of Ni foam (A) and SS mesh (B) before use; The high resolution XPS 

spectra of (C) Cr 2p and (D) Si 2p (E) Mn 2p of SS mesh before use.

In the Cr 2p region, the peaks at 586.3 and 576.4 eV correspond to the Cr 2p of Cr3+ [1, 2]. 

The high-resolution Si 2p XPS spectra of SS mesh are shown in Fig. S2D, 102.8 eV was 

characteristics of Si3+, while the peaks at 101.9 eV was characteristics of Si2+ [3]. The spin-

orbit components of the Mn 2p3/2 photoemission were located at 641.2 eV, which corresponds 

to MnO and Mn2O3 [4, 5]. 
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Fig. S3. Nyquist plots of EIS of samples with an amplitude of 5 mV (A) from 105 Hz to 0.1 Hz (HER); 

(B) from 10 kHz to 0.01 Hz (OER).
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Fig. S4. Comparison of the XRD patterns of Ni foam and SS mesh before and after the stability test.

Fig. S5. The XPS spectra of Ni 2p of Ni foam after the stability test.

The XPS results of the Ni foam after the HER stability test are shown in the Fig. S5. The 

peaks at binding energies of 873.4 and 855.7 eV can be assigned to Ni 2p1/2 and Ni 2p3/2 of 

NiO, respectively [6]. The satellite peak at around 879.2 eV and 861.4 eV are two shake-up 

type peaks of nickel at the high binding energy side of the Ni 2p1/2 and Ni 2p3/2 edge [7]. 

Comparing the XPS data of the Ni 2p before (Fig. 3A) and after the stability test (Fig. S5), it 

can be seen that the peak at 852.1 eV disappeared after the electrocatalysis test, which shows 

the metallic nickel has been completely oxidized to NiO after the electrocatalysis test in 1 M 

KOH solution.
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Fig. S6. The XPS spectra of Fe 2p (A), Cr 2p (B), Ni 2p (C), Si 2p (D) and Mn 2p (E) of SS mesh after 
the stability test.

The XPS results of the SS mesh after the OER stability test are shown in the Fig. S6. Fig. 

S6A shows the high resolution Fe 2p XPS of SS mesh after the stability test. The XPS 

spectrum of Fe 2p displays four peaks at 710.6, 712.5, 722.7 and 725.5 eV, which are 

attributed to the binding energy of Fe 2p3/2 and Fe 2p1/2, respectively. The peaks at 710.6 and 

722.7 eV can be attributed to FeO [8], whereas the peaks at 712.5 and 725.5 eV can be 

assigned to Fe2O3 [8, 9]. Comparing the XPS data of the Fe 2p before and after the stability 
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test, it can be seen that the peak at 706.4 eV disappeared after the stability test, which shows 

the metal iron after the stability test has been completely oxidized. In addition, the XPS peak 

of Fe2+ after the stability test decreased, and the peak area of Fe3+ was relatively increased, 

which shows the part of the ferrous iron is converted into ferric iron, and Fe elements was 

existed as a mixture of FeO and Fe2O3 after the stability test. Fig. S6B shows the high 

resolution Cr 2p XPS spectrum of SS mesh after the stability test, the peaks at binding 

energies of 586.6 and 576.7 eV can be assigned to Cr 2p of Cr3+ [1, 2]. Comparing the XPS 

data of the Cr 2p before and after the stability test, it can be seen that the peak of Cr element 

slightly weakens after the stability test. Fig. S6C shows the high resolution Ni 2p XPS of SS 

mesh after the stability test, the peaks at binding energies of 873.5 and 855.8 eV can be 

assigned to Ni 2p1/2 and Ni 2p3/2 of NiO, respectively [6]. The satellite peak at around 879.7 

eV and 861.9 eV are two shake-up type peaks of nickel at the high binding energy side of the 

Ni 2p1/2 and Ni 2p3/2 edge [7], which shows that Ni elements of SS mesh was existed as NiO 

after the stability test. Fig. S6D shows the high resolution Si 2p XPS spectrum of SS mesh 

after the stability test, the peaks at 101.9 eV were characteristics of Si2+ [3], which indicates 

that trivalent Si is completely converted into divalent Si after the stability test. Fig. S6E shows 

the high resolution Mn 2p XPS spectrum of SS mesh after the stability test, the peaks at 

binding energies of 643.3 eV can be assigned to MnO2 [2], which indicates that trivalent Mn is 

converted into tetravalent Mn after the electrocatalysis test in 1 M KOH solution.
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Table S1. The catalytic activity data of different catalysts for HER .

Catalyst     / (V vs RHE) (j = 10 mA cm-2)         Ref  

δ-MnO2 80 mV [10]

Fe/N-HCS-0.5-800 170 mV [11]

NOPHC10-900 290 mV [12]

NiCoP 118 mV [13]

Ni3S2 200 mV [14]

W(S0.48Se0.52)2 260 mV [15]

Ni0.9Fe0.1/NC 219 mV  [16]

NiCo2S4 210 mV [17]

Ni3S2 223 mV [18]

Co4Mo2@NC 218 mV [19]

Mo(S0.49Se0.51)2 271.3 mV [20]

Ni foam 217 mV This work
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Table S2. The catalytic activity data of different catalysts for OER. 

Catalyst  / (V vs RHE) (j = 10 mA cm-2)         Ref  

Co9S8 434 mV [21]

MnO2-CoP3 288 mV [22]

CuO-Co-0.2 394 mV [23]

Ni3S2 187 mV [24] 

Ni3Se2 290 mV [25] 

NiCo-LDH 271 mV [26]

N-NiFe 230 mV [27]

Ni2.53Ir NCs 302 mV [28]

CoS 297 mV [29]

CoP 330 mV [30]

SS mesh 277 mV This work
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