Supporting Information (SI)

Nano-aggregates of Furan-2-Carbohydrazide derivatives displaying enhanced emission

with bathochromic-shift

Ge Ding*1#, Xinchao Wang*2#, Xiujuan Li², Hongpan Liu¹, Lunxiang Wang¹, Na Liu¹, Fang Gao*3, Zhenqiang Wang*4

¹College of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Chongqing, China, 402160

²College of Pharmacy, Heze University, Heze, Shandong Province, China, 274000

³College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China, 400044

⁴College of Chemistry, Chongqing Normal University, Chongqing, China, 401331

Emails: dingge1989cqu@126.com, wxc198566@126.com, 772630581@qq.com, fanggao1971@126.com

Xinchao Wang and Ge Ding are designated as the co-first authors, who make equal contribution to this study

Table of contents

Items	pages
1. Figures of photophysical properties	Page 2-4
2. Detail synthesis and characterization	Page 5-6
3. ¹ H NMR spectra of precursor compounds	Page 7
4. ¹ H NMR and ¹³ C-NMR spectra of the target co	ompounds page 8-10

1. Figures of photophysical properties

Figure S2 Size distribution of C1 aggregates (at 30 min (a) and 12 h (b) respectively) in THF/H₂O (40/60 (v/v)) mixture solution (1×10⁻⁵ mol/L) obtained by DLS.

TS (transition state)

Figure S3 Four-level cycle of internal proton transfer in the excited state for C1

Figure S4 UV/visible absorption spectra of C1 (a) and C2 (b) in THF/H₂O mixed solution with different water

volume fractions (v), the concentration is 2×10^{-5} mol/L respectively.

Figure S5 IR spectra of C1, (a) in pure THF solution (the concentration is 0.1 mol/L), (b) in solid state and (c)

in aggregate state.

Figure S6 Simulated J-type stacking modes of C1 molecule utilizing the π - π stacking interaction and

intramolecular hydrogen bond interaction (O-H…N, red line).

Figure S7 Emission spectra of C1 and C2 in solid state, excited at 350 nm, the images are solid state C1 and C2 respectively under UV lamp at 365 nm.

2. Detail synthesis and characterization

Intermediate 1

4'-ethyl-3-hydroxy-[1, 1'-biphenyl]-4-carbaldehyde

4-Bromo-2-hydroxybenzaldehyde (1.05 g, 5 mmol) and 4-Ethylphenylboronic acid (2.440 g, 20 mmol) in 100 ml dry THF were added into a three-necked flask. The reaction is carried out under the protection of argon, and potassium carbonate (2.15 g, 15 mmol) was added into the mixed solution after 0.5 h, after 0.5 h of continous reaction, catalyst tetrakis(triphenylphosphine)palladium (112 mg, 0.50 mmol, 5 mol%) was added and reflux for 12 h. After the reaction, the solvent was evaporated under vacuum. Recrystallization from ethanol and cyclohexane gave the pure material as faint yellow solid (yield \sim 51%, m.p. 210.6 \sim 211.8 °C). ¹H-NMR (400 MHz, CDCl₃) δ (ppm): 11.116 (s, OH, 1H), 9.909 (s, -CH=N-, 1H), 7.609-7.551 (m, Ar-H, 4H), 7.317-7.297 (d, J=8.0 Hz, Ar-H, 2H), 7.243-7.212 (t, J=6.2 Hz, Ar-H, 1H), 2.740-2.633 (t, -CH₂, 2H), 1.302-1.264 (t, J=7.6 Hz, -CH₃, 3H). Elementary analysis, Anal. Calcd for C₁₅H₁₄O₂: C, 79.62; H, 6.24. Found: C, 79.45; H, 6.33.

Target C1

N'-((4'-ethyl-3-hydroxy-[1,1'-biphenyl]-4-yl)methylene)furan-2-carbohydrazide

4'-ethyl-3-hydroxy-[1,1'-biphenyl]-4-carbaldehyde (1.05 g, 5 mmol) and Furan-2-Carbohydrazide (2.440 g, 20 mmol) in 100 ml dry ethanol were added into a three-necked flask. The reaction mixture was stirred at room temperature under argon protection for 12 hours. After the reaction, the solvent was evaporated under vacuum. Recrystallization from ethanol and cyclohexane gave the pure material as faint yellow solid (yield ~62%, m.p. 256.6~257.8 °C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ (ppm): 12.123 (s, -OH, 1H), 11.206 (s, -NH-, 1H), 8.619 (s, - CH=N-, 1H), 7.909-7.870 (m, Ar-H, 1H), 7.621-7.513 (m, furan-H, 3H) , 7.294-7.274 (d, *J*=8.0 Hz, Ar-H, 2H), 7.208-7.128 (m, Ar-H, 4H), 2.646-2.590 (m, -CH₂-, 2H), 1.200-1.162 (t, *J*=16 Hz, -CH₃, 3H). ¹³C-NMR (151 MHz, DMSO-*d*₆) δ (ppm): 168.263, 163.287, 145.110, 140.120, 139.264, 138.336, 138.115, 137.582, 132.605, 129.608, 128.860, 127.046, 126.604, 118.182, 113.876, 111.594, 106.739, 106.704, 28.261, 15.992. Elementary analysis, Anal. Calcd for C₂₀H₁₈N₂O₃: C, 71.84; H, 5.43; N, 8.38. Found: C, 71.92; H, 5.31; N, 8.32.

Reference C2

N'-((4'-ethyl-3-methoxy-[1,1'-biphenyl]-4-yl)methylene)furan-2-carbohydrazide

N'-((4'-ethyl-3-hydroxy-[1,1'-biphenyl]-4-yl)methylene)furan-2-carbohydrazide (0.94 g, 10 mmol) and sodium hydroxide (1.60 g, 40 mmol) in DMSO (20 mL) was treated with methyl iodide (2.48 g, 20 mmol) and maintained at room temperature for 30 min. The reaction mixture was diluted with water (20 mL) and extracted with light petroleum. The combined petroleum extracts were washed with aqueous sodium hydroxide and dried with MgSO₄, the solvent was evaporated under vacuum. Recrystallization from ethanol and cyclohexane gave the pure material as faint yellow solid (yield ~66%, m.p. 260.6~261.9 °C). ¹H-NMR (400 MHz, DMSO-d₆) δ (ppm):11.207 (s, -NH-, 1H), 8.619 (s, CH=N-, 1H), 7.939-7.867 (m, Ar-H, 3H), 7.617-7.491 (m, furan-H, 3H), 7.239-7.128 (m, Ar-H, 5H), 3.757 (s, -OCH₃, 3H), 3.354-3.329 (m, -CH₂-, 2H), 1.089-1.086 (d, *J*=12 Hz, -CH₃). ¹³C-NMR (151 MHz, DMSO-d₆) δ (ppm): 168.672, 145.738, 144.452, 141.957, 141.364, 138.734, 137.254, 128.423, 127.060, 126.520, 123.775, 123.733, 122.070, 115.343, 56.981, 29.736, 15.515. Elementary analysis, Anal. Calcd for C₂₁H₂₀N₂O₃: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.38; H, 5.75; N, 8.21.

3. ¹H NMR spectra of precursor compounds

Intermediate

4'-ethyl-3-hydroxy-[1,1'-biphenyl]-4-carbaldehyde ¹H-NMR (CDCl₃)

Reference C2 ¹H-NMR (DMSO-*d*₆)

