Supporting information

Synthesis of Cu(II) Schiff base complex using a bidentate N_2O_2 donor ligand:

Crystal structure, photophysical properties and antibacterial activities

Yaning Guo*, Xiaobing Hu, Xinli Zhang , Xiaohua Pu and Yue Wang

College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Shaanxi

Province Key Laboratory of Phytochemistry, Baoji Shaanxi 721013 People's Republic of China

ggyn1997@163.com (Y. N. Guo)

Figure Captions

Fig. S1 ¹H NMR spectrum of HL in DMSO-*d*₆

Fig. S2 ¹³C NMR spectrum of HL in DMSO-*d*₆

Fig. S3 (a) The two-dimensional structure of HL viewed along the [100] direction; (b) The threedimensional structure of HL formed by C-H---Cl, C-H--- π and C-H---O hydrogen bonds. Dotted lines represent the weak interactions.

Fig. S4 The FTIR spectra of HL and Cu(II) complex

Fig. S2 ¹³C NMR spectrum of HL in DMSO-*d*₆

(a)

Fig. S3 (a) The two-dimensional structure of HL viewed along the [100] direction;
(b) The three-dimensional structure of HL formed by C-H---Cl, C-H--- π and C-H---O hydrogen bonds. Dotted lines represent the weak interactions.

Fig. S4 The FTIR spectra of HL and Cu(II) complex

Table captions:

Table S1 Selected bond lengths (nm) and bond angles (°) for HL and Cu(II) complex

Table S2 Parameters of hydrogen bonds and halogen-halogen interaction for HL and Cu(II) complex

Bonds	d	Bonds	d	Bonds	d			
HL								
Br(1)-C(2)	0.1890(2)	Cl(1)-C(4)	0.1729(2)	O(1)-C(1)	0.1343(3)			
N(1)-C(7)	0.1276(3)	N(1)-C(8)	0.1437(3)	C(6)-C(7)	0.1457(3)			
O(1)-H(1O)	0.093(3)	C(8)-C(9)	0.1407(3)	C(7)-H(7)	0.09500			
Cu(II) complex								
Cu(1)-O(1)#1	0.18841(12)	Cu(1)-O(1)	0.18841(12)	Cu(1)-N(1)	0.19772(15)			
Cu(1)-N(1)#1	0.19772(15)	Br(1)-C(3)	0.18899(18)	Cl(1)-C(5)	0.17495(18)			
O(1)-C(2)	0.1295(2)	N(1)-C(7)	0.1292(2)	N(1)-C(8)	0.1446(2)			
C(7)-H(7)	0.09500	C(1)-C(7)	0.1441(2)	C(5)-C(6)	0.1368(3)			
Angle	ω	Angle	ω	Angle	ω			
HL								
C(1)O(1)H(1O)	103.1(19)	C(7)N(1)C(8)	118.7(2)	O(1)-C(1)-C(2)	119.9(2)			
O(1)-C(1)-C(6)	121.9(2)	C(3)-C(2)-Br(1)	119.69(17)	C(1)-C(2)-Br(1)	118.62(16)			
C(1)C(6)C(7)	120.3(2)	N(1)C(7)C(6)	122.3(2)	C(5)C(4)Cl(1)	119.58(18)			
C(3)C(4)Cl(1)	119.20(18)	C(6)C(1)C(2)	118.2(2)	C(2)C(3)C(4)	118.8(2)			
Cu(II) complex								
$O(1)^{\#1}Cu(1)O(1)$	156.81(8)	$O(1)^{\#1}Cu(1)N(1)$	92.75(6)	O(1)Cu(1)N(1)	93.13(6)			
$O(1)^{\#1}Cu(1)N(1)^{\#1}$	93.13(6)	$O(1)Cu(1)N(1)^{\#1}$	92.75(6)	N(1)Cu(1)N(1) ^{#1}	150.41(9)			
C(2)O(1)Cu(1)	127.53(12)	C(7)N(1)C(8)	116.08(15)	C(7)-N(1)-Cu(1)	123.05(12)			
C(8)-N(1)-Cu(1)	120.41(11)	C(6)-C(1)-C(7)	116.40(16)	O(1)-C(2)-C(1)	124.45(15)			
C(4)-C(3)-Br(1)	119.32(13)	C(2)-C(3)-Br(1)	117.66(13)	C(6)-C(5)-Cl(1)	119.55(15)			
C(4)-C(5)-Cl(1)	119.21(14)	N(1)-C(7)-C(1)	126.26(16)	C(9)-C(8)-N(1)	118.05(16)			

Table S1 Selected bond lengths (nm) and bond angles (°) for HL and Cu(II) complex

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2

Table S2 Parameters of hydrogen bonds and halogen-halogen interaction for HL and Cu(II) complex

Compound	D—H…A	<i>d</i> (D–H)	$d(H \cdots A)$	$d(\mathbf{D}\cdots\mathbf{A})$	∠(DHA)
HL	$C(12)-H(12)Cl(1)^{i}$	0.0950	0.2890	0.3803	161.4
	C(14)-H(14c)O(1) ⁱⁱ	0.0980	0.2706	0.3145	107.7
	C(15)-H(15)Cg	0.0980	0.3201	0.3615	107.3
Cu(II)	C(14)-H(14C)Cl(1) ^{#2}	0.1749	0.2911	0.3776	168.5
complex	C(10)-H(10)Cg ^{#3}	0.0950	0.2826	0.3470	125.4