## **Electronic Supplementary Information**

## Insight of structural stability and helium diffusion behavior of Fe-Cr alloys from first-principles

Lei Wan,<sup>a</sup> Qingqing Wang,<sup>a</sup> Xiaoqiu Ye,<sup>b</sup> Xingzhong Cao,<sup>c</sup> Shuoxue Jin<sup>c</sup> and Tao Gao\*ad

- <sup>a</sup>Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China. E-mail: gaotao@scu.edu.cn.
- <sup>b</sup>Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907, P. R. China.
- <sup>c</sup>Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, P. R. China.
- <sup>d</sup>Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P. R. China. E-mail: gaotao@scu.edu.cn.

†Electronic supplementary information (ESI) available.

\*Corresponding author. E-mail: gaotao@scu.edu.cn



**Figure S1.** The structure diagrams of He migration between tetrahedral interstitials (Figures S1b and 1d) and octahedral interstitials (Figures S1a and 1c) of S<sub>1</sub> in AFM and NM states. (a) and (c) denote the structures of  $O_1 \rightarrow O_2$  in the AFM and NM states. (b) and (d) indicate the structures of  $T_2 \rightarrow T_3$  in the AFM and NM states, respectively. "T-He" and "O-He" represent the He atoms in tetrahedral and octahedral interstitials, respectively.



**Figure S2.** The structure diagrams of He migration between tetrahedral ( $T_3$ ) and octahedral ( $O_1$ ) interstitials of  $S_1$  in AFM (Figure S2a) and NM (Figure S2b) states. "T-He" and "O-He" represent

the He atoms in tetrahedral and octahedral interstitials, respectively.



**Figure S3.** The structure diagrams of He migration between tetrahedral interstitials (Figures S3b and 3d) and octahedral interstitials (Figures S3a and 3c) of S<sub>2</sub> in AFM and NM states. (a) and (c) denote the structures of  $O_1 \rightarrow O_2$  in the AFM and NM states. (b) and (d) indicate the structures of  $T_2 \rightarrow T_3$  in the AFM and NM states, respectively. "T-He" and "O-He" represent the He atoms in tetrahedral and octahedral interstitials, respectively.



**Figure S4.** The structure diagrams of He migration between tetrahedral  $(T_1)$  and octahedral  $(O_1)$  interstitials of  $S_2$  in AFM (Figure S4a) and NM (Figure S4b) states. "T-He" and "O-He" represent the He atoms in tetrahedral and octahedral interstitials, respectively.



**Figure S5.** The structure diagrams of He migration between tetrahedral interstitials  $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4)$  of S<sub>1</sub> in AFM (Figure S5a) and NM (Figure S5b) states. "T-He" represents the He atoms in tetrahedral interstitials.



**Figure S6.** The structure diagrams of He migration between tetrahedral interstitials  $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4)$  of S<sub>2</sub> in AFM (Figure S6a) and NM (Figure S6b) states. "T-He" indicates the He atoms in tetrahedral interstitials.

**Table S1** The Bader charges of  $S_1$  and its bulk  $\gamma$ -Fe in AFM and NM states. "Doped" means Fe– Cr alloys structure. " $\Delta$ " indicates the difference of Bader charge after substitution.

| site | Mag. | Atom            | Pure $( e )$ | Doped ( e ) | $\Delta( e )$ |
|------|------|-----------------|--------------|-------------|---------------|
|      |      | Fe <sub>1</sub> | 8.000        | 8.033       | 0.033         |
|      |      | Fe <sub>2</sub> |              | 8.052       | 0.052         |

|    | Fe <sub>3</sub>  |         | 8.032   | 0.032  |
|----|------------------|---------|---------|--------|
|    | Fe <sub>8</sub>  |         | 8.031   | 0.031  |
|    | Fe <sub>10</sub> |         | 8.049   | 0.049  |
|    | Fe <sub>16</sub> |         | 8.033   | 0.033  |
|    | Fe <sub>19</sub> |         | 8.032   | 0.032  |
|    | Fe <sub>24</sub> |         | 8.031   | 0.031  |
|    | Cr               | _       | 5.555   | -0.445 |
|    | total            | 256.000 | 254.000 |        |
| NM | Fe <sub>1</sub>  | 8.000   | 8.036   | 0.036  |
|    | Fe <sub>2</sub>  |         | 8.037   | 0.037  |
|    | Fe <sub>3</sub>  |         | 8.037   | 0.037  |
|    | Fe <sub>8</sub>  |         | 8.037   | 0.037  |
|    | Fe <sub>10</sub> |         | 8.036   | 0.036  |
|    | Fe <sub>16</sub> |         | 8.037   | 0.037  |
|    | Fe <sub>19</sub> |         | 8.036   | 0.036  |
|    | Fe <sub>24</sub> |         | 8.038   | 0.038  |
|    | Cr               | _       | 5.532   | -0.468 |
|    | total            | 256.000 | 254.000 |        |

**Table S2** The Bader charges of  $S_2$  and its pure  $\gamma$ -Fe alloy in AFM and NM states. "Doped" denotes Fe–Cr alloy structure. " $\Delta$ " represents the difference of Bader charge after substitution.

\_

| site  | Mag. | Atom             | Pure ( e ) | Doped ( e ) | $\Delta( e )$ |
|-------|------|------------------|------------|-------------|---------------|
|       |      | Fe <sub>6</sub>  | 8.000      | 8.031       | 0.031         |
|       |      | Fe <sub>11</sub> |            | 8.031       | 0.031         |
|       |      | Fe <sub>14</sub> |            | 8.031       | 0.031         |
|       |      | Fe <sub>15</sub> |            | 8.031       | 0.031         |
|       |      | Fe <sub>20</sub> |            | 8.050       | 0.050         |
|       |      | Fe <sub>22</sub> |            | 8.031       | 0.031         |
|       | AFM  | Fe <sub>24</sub> |            | 8.050       | 0.050         |
|       |      | Fe <sub>27</sub> |            | 8.031       | 0.031         |
|       |      | Fe <sub>28</sub> |            | 8.050       | 0.050         |
|       |      | Fe <sub>29</sub> |            | 8.031       | 0.031         |
|       |      | Fe <sub>30</sub> |            | 8.031       | 0.031         |
|       |      | Fe <sub>31</sub> |            | 8.050       | 0.050         |
|       |      | Cr               | _          | 5.554       | -0.446        |
| $S_2$ |      | total            | 256.000    | 254.000     |               |
|       |      | Fe <sub>6</sub>  | 8.000      | 8.036       | 0.036         |

| Fe <sub>11</sub> |         | 8.036   | 0.036  |
|------------------|---------|---------|--------|
| Fe <sub>14</sub> |         | 8.036   | 0.036  |
| Fe <sub>15</sub> |         | 8.036   | 0.036  |
| Fe <sub>20</sub> |         | 8.036   | 0.036  |
| Fe <sub>22</sub> |         | 8.036   | 0.036  |
| Fe <sub>24</sub> |         | 8.036   | 0.036  |
| Fe <sub>27</sub> |         | 8.036   | 0.036  |
| Fe <sub>28</sub> |         | 8.036   | 0.036  |
| Fe <sub>29</sub> |         | 8.036   | 0.036  |
| Fe <sub>30</sub> |         | 8.036   | 0.036  |
| Fe <sub>31</sub> |         | 8.036   | 0.036  |
| Cr               | _       | 5.532   | -0.468 |
| total            | 256.000 | 254.000 |        |