Aggregation-induced emission enhancement (AIEE)-active boron-difluoride dyes

with reversible mechanochromic fluorescence

Xiaojing Yan, Pengcheng Zhu, Yang Li, Haichuang Lan, Shuzhang Xiao*

College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China.

shuzhangxiao@ctgu.edu.cn

Compound	solvent	λ_{max}, nm	$\epsilon, M^{-1} cm^{-1} (\times 10^4)$	λ_{em}, nm	$\Phi_{ m F}$
PHPO-BF ₂	hexane	490	0.202	546, 586	0.5%
	chloroform	496	0.318	564	1.3%
	THF	480	0.230	566	0.4%
	acetonitrile	491	0.209	568	0.5%
NHPO-BF ₂	hexane	505	0.307	572, 616	0.3%
	chloroform	514	0.304	593	0.7%
	THF	496	0.330	590	0.6%
	acetonitrile	510	0.333	595	0.4%

Table S1. Photophysical data of boron-difluoride dyes

Figure S1. HOMO and LUMO orbitals of PHPO-BF2 and NHPO-BF2

Figure S2. Normalized concentration-dependent fluorescence spectra of $PHPO-BF_2$ (A) and $NHPO-BF_2$ (B) in hexane

Figure S3. (A) Normalized concentration-dependent absorption and (B) fluorescence spectra of $PHPO-BF_2$ in THF

Figure S4. (A) Normalized concentration-dependent absorption and (B) fluorescence spectra of $NHPO-BF_2$ in THF

Figure S5. Tyndall effect: $(1.0 \times 10^{-5} \text{ M}, \text{ the content of } H_2\text{O} \text{ in THF/H}_2\text{O} \text{ is } 0\% \text{ or } 99\%)$

Figure S6. Particle size distribution of PHPO-BF₂ aggregates from mixture of THF and water (A) THF/H₂O (v/v 20:80); (B) THF/H₂O (v/v 1:99)

Figure S7. Particle size distribution of $NHPO-BF_2$ aggregates from mixture of THF and water (THF/H₂O, v/v 1:99)

Figure S8. Dihedral angle between different planes in the crystal structure of PHPO-BF₂

Figure S9. XRD patterns of $PHPO-BF_2$ (A) simulated spectra from single crystal structure; (B) initial polycrystalline powder

Figure S10. Proposed intermolecular interactions in molecular clusters of $PHPO-BF_2$ during the mechanochromism (shown as green cloud)

Figure S11. ¹H NMR spectrum of PHPO-BF₂ (400 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of PHPO-BF₂ (101 MHz, CDCl₃)

Figure S13. HRMS spectrum of PHPO-BF₂

Figure S14. ¹H NMR spectrum of NHPO-BF₂ (400 MHz, CDCl₃)

Figure S15. ¹³C NMR spectrum of NHPO-BF₂ (101 MHz, CDCl₃)

