Supplementary material

Evaluation of cytotoxic potential of structurally well-characterized RNA targeted Ionic Non-steroidal anti-inflammatory (NSAID) Cu(II) & Zn(II) DACH-mefenamato drug conjugates against human cancer cell lines.

HuzaifaYasir Khan, Sartaj Tabassum and Farukh Arjmand*

Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India *Corresponding author E-mail: farukh.arjmand18@gmail.com

Table S1

Length/Å Length/Å Atom Atom Atom Atom 2.018(3) 1.389(6) Cu1 N3 C37 C36 Cu1 N1 2.019(3)C37 C38 1.376(7)Cu1 N4 2.019(3)C24 C23 1.393(7)Cu1 N2 2.005(3) C24 C27 1.506(7) C13 1.266(5) C18 C17 1.378(6) O2 C7 N3 C16 C17 1.382(7)1.483(6) C13 C41 C40 01 1.260(5)1.513(6)C29 C34 1.414(6) C22 C23 1.380(7) C29 C30 1.396(6) C31 C32 1.388(6) C29 C28 1.508(6) C35 C36 1.382(6) C19 C35 C40 1.397(6)N5 1.387(6)C20 C33 C32 1.379(6)N5 1.417(5)C1 1.475(6) C11 C10 1.534(6) N1 N4 C12 1.495(6) C11 C12 1.496(6) C34 1.376(5)C38 C39 1.388(7)N6 C35 1.426(5)C39 C42 1.506(6)N6 N2 C6 1.462(6) C39 C40 1.403(6) C14 C19 1.420(6) C8 C9 1.540(7) C14 C15 1.391(6) C8 C7 1.541(6)C14 C13 1.510(6)C9 C10 1.464(7)C19 C18 1.397(6)C5 C6 1.507(6) C25 1.505(7)C20 1.403(6) C5 C4 C25 C24 1.404(6) C12 C7 1.465(7)

Selected bond lengths for 1

C25	C26	1.504(6)	C2	C3	1.526(8)
C34	C33	1.405(6)	C2	C1	1.515(7)
C15	C16	1.378(6)	C3	C4	1.301(9)
C30	C31	1.377(6)	C6	C1	1.303(9)
C20	C21	1.399(6)	05	C28	1.258(5)
C21	C22	1.384(6)	06	C28	1.265(5)

Table S2

Bond Angles for Complex 1								
Atom Atom Atom			Angle/°	Atom Atom Atom			Angle/°	
N1	Cu1	N3	93.53(13)	C36	C35	N6	119.0(4)	
N4	Cul	N3	85.13(13)	C40	C35	N6	120.3(4)	
N4	Cul	N1	175.91(15)	C40	C35	C36	120.7(4)	
N2	Cul	N3	176.69(14)	C35	C36	C37	120.2(4)	
N2	Cul	N1	83.99(13)	C32	C33	C34	121.2(4)	
N2	Cul	N4	97.19(13)	C12	C11	C10	111.4(4)	
C7	N3	Cu1	106.8(3)	C22	C23	C24	121.3(4)	
C30	C29	C34	118.1(4)	C39	C38	C37	121.6(4)	
C28	C29	C34	122.8(4)	C42	C39	C38	120.4(4)	
C28	C29	C30	119.1(4)	C40	C39	C38	119.2(4)	
C20	N5	C19	126.7(4)	C40	C39	C42	120.5(4)	
C1	N1	Cu1	108.7(3)	01	C13	02	124.2(4)	
C12	N4	Cu1	107.7(3)	C14	C13	O2	119.4(4)	
C35	N6	C34	122.8(4)	C14	C13	01	116.5(4)	
C6	N2	Cu1	108.9(3)	C33	C32	C31	120.4(4)	
C15	C14	C19	119.0(4)	C35	C40	C41	121.0(4)	
C13	C14	C19	123.1(4)	C39	C40	C41	120.0(4)	
C13	C14	C15	117.8(4)	C39	C40	C35	119.0(4)	
C14	C19	N5	119.9(4)	C16	C17	C18	120.9(4)	
C18	C19	N5	121.8(4)	C7	C8	C9	108.5(4)	
C18	C19	C14	118.3(4)	C10	C9	C8	110.6(5)	
C24	C25	C20	118.9(4)	C4	C5	C6	111.9(4)	
C26	C25	C20	119.2(4)	C9	C10	C11	112.5(4)	
C26	C25	C24	121.8(4)	C11	C12	N4	114.3(4)	
N6	C34	C29	120.9(4)	C7	C12	N4	108.0(4)	
C33	C34	C29	118.8(4)	C7	C12	C11	114.7(4)	
C33	C34	N6	120.2(4)	C1	C2	C3	110.5(5)	
C16	C15	C14	121.8(4)	C8	C7	N3	112.8(4)	
C31	C30	C29	122.8(4)	C12	C7	N3	108.8(4)	
C25	C20	N5	118.4(4)	C12	C7	C8	112.6(4)	

C21	C20	N5	120.9(4)	C4	C3	C2	121.0(6)
C21	C20	C25	120.6(4)	C5	C6	N2	116.5(4)
C22	C21	C20	119.7(4)	C1	C6	N2	117.2(6)
C38	C37	C36	119.3(4)	C1	C6	C5	119.8(6)
C23	C24	C25	119.4(4)	C2	C1	N1	114.7(5)
C27	C24	C25	121.3(4)	C6	C1	N1	116.1(5)
C27	C24	C23	119.3(4)	C6	C1	C2	120.9(6)
C17	C18	C19	120.9(4)	C3	C4	C5	121.3(6)
C17	C16	C15	118.9(4)	05	C28	C29	120.1(3)
C23	C22	C21	120.0(4)	06	C28	C29	116.8(4)
C32	C31	C30	118.8(4)	06	C28	05	123.1(4)

Fig. S1 EPR spectrum of complex 1

Fig. S2 ¹H NMR spectrum of complex 2

Fig. S3 ¹³C NMR spectrum of complex 2

Fig. S4 ¹HNMR spectrum of Mefenamic acid

Fig. S5 (b) ¹³C NMR spectrum of free mefenamic acid

Fig. S5 (c) 13 C NMR spectrum of free DACH

Fig. S6 ESI-MS spectrum of complex 1.

Fig. S7 ESI-MS spectrum of complex 2.

(b)

Fig. S8 TGA plot of (a) 1 and (b) 2

Fig. S9 Absorption spectra of complexes 1 (a) and 2 (b) in the presence of increasing ctDNA concentration.

Fig. S10 Emission spectra of **(a)** complex **1** and **(b)** complex **2** in TrisHCl buffer at pH 7.2 upon addition of ctDNA. Arrow indicates changes in intensity with increasing concentration of ctDNA.

Fig. S11 Emission spectra of (a) complex 1 and (b) complex 2 in Tris HCl buffer at pH 7.2 upon addition of tRNA. Arrow indicates changes in intensity with increasing concentration of tRNA.

Fig. S12 Emission titration spectra of the EB–tRNA system of complexes 1 and 2.

Fig. S13 Emission titration spectra of the EB–ctDNA system of complexes 1 and 2.

Fig. S14 CD spectra of ctDNA alone (pink), ctDNA + complex **1** (blue)and ctDNA + complex **2** (brown).

Fig. S15 Molecular docked model of complex 2 with (a) tRNA (b) ctDNA

Fig. S16 Growth curve showing % control growth verses drug concentration (μ g/ml) of 1 and 2 against different human carcinoma cell lines