Cr₂O₃ nanosheet/carbon cloth anode with strong interaction and fast charge transfer for pseudocapacitive energy storage in lithium-ion batteries

DongleiGuo^a, Mengke Yang^a, Lilei Zhang^a, Yicong Li^a, JinxiangWang^a, Guilong Liu^a, Naiteng Wu^{a,c}, Jang-Kyo Kim^{b,*} and Xianming Liu^{a,*}

^a Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
^b Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
^cCollege of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China.
*Email: mejkkim@ust. hk(Jang-Kyo Kim), myclxm@163.com(Xianming Liu)

Fig.S1. XRD patterns of (a) CrOOH-CC and (b) CC.

Fig.S2. Digital photographs of (a) Cr₂OOH-CC and (b) Cr₂O₃-CC.

Fig.S3. (a-c) FESEM images of CrOOH-CC and (d) Cr₂O₃ NPs.

Fig.S4. EDS spectrum of Cr_2O_3 -CC.

Fig.S5. Cycling performances of Cr_2O_3 -CC with different mass loadings of Cr_2O_3 at the current density of 0.1 A g⁻¹.

Fig.S6. Cyclic performances of CC (a) and Cr_2O_3 -CC (b) based on mass of the whole electrode (Cr_2O_3 and CC) at the current density of 0.1 A g⁻¹.

Fig.S7. CV curves of Cr_2O_3 -CC for the initial five cycles at 0.1 mV s⁻¹.

Fig.S8. $I_p/v^{1/2}$ vs $v^{1/2}$ plots of the Cr₂O₃-CC electrode used to obtain the coefficients, k_1 and k_2 , according to Equation (2).

Fig.S9. Pseudocapacitive contributions to charge storage of the Cr_2O_3 -CC electrode at different scan rates of (a) 0.2, (b) 0.3, (c) 0.5, (d) 0.7mV s⁻¹.

Fig.S10. Long-term cyclic stability and corresponding Coulombic efficiency of Cr_2O_3 -CC//LFP@C full cell at 1 C.

Fig.S11. The digital pictures for the bending lithium-ion full cell that lights a LED.

Samples	R _s (Ω)	R _{ct} (Ω)	$Z_{ m w}$ (Ω)	$D_{\text{Li+}}(\text{cm}^2\text{s}^2)$	
Cr ₂ O ₃ -CC	1.56	140	2.4	6.4 x 10 ⁻¹²	
Cr ₂ O ₃ NPs	6	217	5.4	7.2 x 10 ⁻¹³	

Table S1. Impedance parameters of Cr_2O_3 -CCand Cr_2O_3 NPs fitted with the circuit model of R(QR)(Q(RW))