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Fig. S1. Proteins (A) and synthetic polyamides represented by Nylon 6 (B left) and Nylon 6,6 (B, right) display
significantly different backbone architectures. The reacting amide bond during hydrolysis is represented by the Tilde.
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Fig. S2. Michaelis-Menten plot of HiC and TcC wild-type and variants. Analysis with the substrates para-
nitrophenyl butyrate (bNPB) (A and B) and para-nitrobutyranilide (C and D), in a concentration range 0.3 - 6.3 mM
and 0.01 - 2.04 mM, respectively. (A and C) HiC wild-type and variants: HiC wild type (blue), HiC 1167Q (orange),
and L64H/1167Q (grey). (B and D) TcC wild-type and variants: TcC wild type (blue), TcC 1179A (orange), TcC 1179N
(grey), TcC 1179Q (yellow). Standard deviation was lower than 5%.
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Fig. S3. Hydrolysis pathway of 3PA 6,6. The degradation of the substrate N*-Né-dihexyladipamide (3PA 6,6) was
revealed by means of GC-FID.
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Fig. S4. The preferred hydrogen bond acceptor in TS is a water molecule. The data presented corresponds to weak
hydrogen bonds and is based on analysis of 100 ns MD simulations that were run in duplicate. For each trajectory,
38000 and 40000 snapshots were analyzed for TcC and HiC respectively.
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Fig. S5. Production phase used for analysis of MD simulations corresponded to 95 ns for TcC wild type and variants
(A), and 100 ns for HiC (B).
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Fig. S6. Possible Nylon 6,6 hydrolysis pathway. The release products present at the end of each path were used as
standard to identify released products by means of GC-MS (Fig. S9). Hexane-1,6-diamine shown in the spectra A and
C, adipic acid shown in the spectra B and 1,8-diazacyclotetradecane-2,7-dione shown in the spectra D (fig. S7). The
grey arrow shows the possible target of the enzyme.
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Fig S7. Compounds identified by comparison of the fragment spectrum against those reported in the library
NIST. (A) N-(6aminohexyl)acetamide (MW: 158 g mol?) with a retention time of 13.15 min; (B) 6-ethoxy-6-
oxohexanoic acid (MW: 174 g mol™*) with a retention time of 15.5 min; (C) N,N-(hexane-1,5-diyl)diacetamide (MW:
200 g mol?) with a retention time of 15.9 min; (D) 1,8-diazacyclotetradecane-2,7-dione (MW: 226 g mol?) with a

retention time of 28.5 min.
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Fig. S8. HPLC chromatogram of release products from PET hydrolysis. The chromatogram was acquired at
241 nm. (a) Terephthalic acid (Ta) at 3.75 min; (b) mono-(2-hydroxyethyl) terephthalate (MHET) at 5.45 min; (c)
bis(2-hydroxyethyl) terephthalate (BHET) at 6.4 min.



Table S1. Water-restructuring mutations. Primers used for the two-stage site-directed mutagenesis are shown with
mismatched nucleotides underlined.

Primer name Nucleotide sequences

5-CGC TGA TCA TCG GGG CCG ACC TCG ACA CAA ACG CGC
TcC lle179Asn_Fwd CGG TCG CCA CGC ACG CGA AAC CG-3

5-CGG TTT CGC GTG CGT GGC GAC CGG CGC GTT TGT GTC
TcC lle179Asn_Rev GAG GTC GGC CCC GAT GAT CAG CG-3'

5-CGC TGA TCA TCG GGG CCG ACC TCG ACA CAG CCG CGC
TcC lle179Ala_Fwd CGG TCG CCA CGC ACG CGA AAC CG-3

5-CGG TTT CGC GTG CGT GGC GAC CGG CGC GGC TGT GTC
TcC lle179Ala_Rev GAG GTC GGC CCC GAT GAT CAG CG-3'

5-CGC TGA TCA TCG GGG CCG ACC TCG ACA CAC AGG CGC
TcClle179GIn_Fwd CGG TCG CCA CGC ACG CGA AAC CG-3

5-CGG TTT CGC GTG CGT GGC GAC CGG CGC CTG TGT GTC
TcC Ile179GIn_Fwd GAG GTC GGC CCC GAT GAT CAG CG-3'




Table S2. Average distance and angle between the reacting NH-group of the 3PA 6,6 substrate and the engineered
side chain.

Variant NH---O=Cacceptor distance (A) NH---0=Cacceptor angle (°)
TcC wild typel® - -

TcC 1179AF! - -
TcC 1179N 4.53 94.1
TcC1179Q 5.15 107.2

HiC wild type® - -
HiC 1167Q' 5.75 79.8
HiC L64H/1167Q!" 7.42 63.3

[a] Based on 100 ns MD-simulations that were run in duplicate. For each trajectory of wild type and variants, 38000 snapshots were analyzed for TcC and
40000 snapshots for HiC. The acceptor refers to the introduced side chain in each case.

[b] No H-bond possible.

[c] Relative abundance of weak hydrogen bond 2.37%. Relative abundance of strong hydrogen bond 1.13%.
[d] Relative abundance of weak hydrogen bond 0.21%. Relative abundance of strong hydrogen bond 0.028%.
[e] Relative abundance of weak hydrogen bond 0%. Relative abundance of strong hydrogen bond 0%.

[f] Relative abundance of weak hydrogen bond 0%. Relative abundance of strong hydrogen bond 0%.



Table S3. Average distance and angle between the reacting NH-group of the 3PA 6,6 substrate and water networks.

Variant NH---Owat distance (A)® NH---Ouat angle (%))

TcC wild typel?e 5.06 67.9
TcC 1179AMe] 3.96 90.2
TcC 1179N!e 3.88 90.9
TcC 1179QMH11 4.62 84.8
HiC wild typell™ 4.01 118.4
HiC 1167Q!"m 3.27 108.3
HiC L64H/1167Q!"] 3.96 120.8

[a] Based on 100 ns MD-simulations that were run in duplicate. For each trajectory of wild type and variants, 38000 snapshots were analyzed for TcC and
40000 snapshots for HiC

[b] 24.8% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [c] Relative abundance of weak
hydrogen bond 0.28%. Relative abundance of strong hydrogen bond 0.0026%.

[d] 49.1% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [e] Relative abundance of weak
hydrogen bond 2.53%. Relative abundance of strong hydrogen bond 0.060%.

[f] 36.1% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [g] Relative abundance of weak
hydrogen bond 1.37%. Relative abundance of strong hydrogen bond 0.023%.

[h] 17.6% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [i] Relative abundance of weak
hydrogen bond 0.47%. Relative abundance of strong hydrogen bond 0.0066%.

[ 8.3% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [k] Relative abundance of weak
hydrogen bond 0.52%. Relative abundance of strong hydrogen bond 0.0023%.

[1] 25.1% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [m] Relative abundance of weak
hydrogen bond 1.42%. Relative abundance of strong hydrogen bond 0.0087%.

[n] 4.5% relative probability to find at least one water molecule within 6 A of the reacting NH-group of the substrate. [0] Relative abundance of weak
hydrogen bond 0.5637%. Relative abundance of strong hydrogen bond 0.010%.



Table S4. Average number of water molecules in the active site and average number of hydrogen bonds per water
molecule. The given values are the averages from two independently run 100 ns MD-simulations using 3PA 6,6. For
each trajectory of wild type and variants, 38000 snapshots were analyzed for TcC and 40000 snapshots for HiC.

Variant Average number of waters in active site!® Average number of hydrogen bonds per

water

TcC wild type 6.1 2.68
TcCI179A 10.1 2.77
TcCI179N 7.8 2.86
TcC1179Q 4.6 2.59
HiC wild type 4.6 2.81
HiC 1167Q 8.0 2.77
HiC L64H/1167Q 3.5 2.38

[a] The number of waters within 8 A of the scissile NH-group of the substrate.



