Electronic Supplementary Information

MoS₂ nanosheets incorporated α -Fe₂O₃/ZnO nanocomposite with enhanced photocatalytic dye degradation and hydrogen production ability

Angkita Mistry Tama^{a†}, Subrata Das^{a†}, Sagar Dutta^a, M D I Bhuyan^a, M. N. Islam^b and M. A. Basith^a

^a Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.

^b Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.

[†]These authors contributed equally.

Table S1 Atomic coordinates, constituent crystallographic phases (in wt%) of synthesized nanomaterials and reliability (R) factors obtained from Rietveld refined powder spectra. Numbers in the parentheses indicate errors in the last significant digit.

Sample	Atomic Coordinates	Crystallographic Phase (in wt%)	R Factor
α-Fe ₂ O ₃	Fe (0,0, 0.3557) O (0.3176,0,0.25)	Trigonal (100%)	$R_{wp} = 2.83$ $R_p = 2.25$ $R_{Exp} = 2.90$ $\chi^2 = 0.953$
α-Fe ₂ O ₃ /ZnO	Fe (0,0, 0.3556) O (0.3052,0,0.25) Zn (0.33333,0.666667,0) O (0.33333,0.66667, 0.3919)	Trigonal (80%) Hexagonal (20%)	$R_{wp} = 3.01$ $R_p = 2.41$ $R_{Exp} = 2.94$ $\chi^2 = 1.00$
NMS inc. α-Fe ₂ O ₃ /ZnO	Fe (0,0, 0.3563) O (0.3067,0,0.25) Zn (0.33333,0.666667,0) O (0.33333,0.666667, 0.3663) Mo (0.33333,0.666667,0) S (0.33333,0.666667, 0.6243)	Trigonal (17%) Hexagonal (83%)	$R_{wp} = 4.34$ $R_p = 3.27$ $R_{Exp} = 3.27$ $\chi^2 = 1.77$
UMS inc. α-Fe ₂ O ₃ /ZnO	Fe (0,0, 0.3547) O (0.3121,0,0.25) Zn (0.33333,0.666667,0) O (0.33333,0.666667, 0.3508) Mo (0.33333,0.666667,0) S (0.33333,0.666667, 0.6243)	Trigonal (24%) Hexagonal (76%)	$R_{wp} = 2.73$ $R_p = 2.19$ $R_{Exp} = 2.67$ $\chi^2 = 1.05$

Fig. S1 FESEM images of ultrasonicated few-layer MoS_2 nanosheets with two different magnifications. The layer thickness of two nanosheets is marked in (a) and an overall view of successfully delaminated few-layer nanosheets of MoS_2 is demonstrated in (b).

Fig. S2 (a) Steady-state photoluminescence intensity spectra of synthesized α -Fe₂O₃ nanoparticles, α -Fe₂O₃ /ZnO, non-ultrasonicated MoS₂ incorporated α -Fe₂O₃ /ZnO and ultrasonicated MoS₂ incorporated α -Fe₂O₃ /ZnO nanocomposites.

Fig. S3 Absorption spectra of RhB dye solution before and after being photodegraded by ultrasonicated MoS_2 incorporated α -Fe₂O₃/ZnO under UV-visible light irradiation.

Table S2 Amount of produced hydrogen gas by as-synthesized ultrasonicated MoS_2 incorporated α -Fe₂O₃/ZnO and other analogous nanocomposites

Photocatalyst	Light Source	Amount of produced hydrogen gas after 4 hours of irradiation (μmol H ₂ /g catalyst)	Reference
UMS inc. α-Fe ₂ O ₃ /ZnO	500 W Hg-Xe lamp	~614	Present work
MoS ₂ /RGO	300 W Xe lamp	~190	[1]
WO ₃ /g-C ₃ N ₄	Artificial solar light	~250	[2]
TiO ₂ /MoSe ₂	300 W Xe lamp	~20	[3]

Calculation of Conduction Band Minima (CBM) and Valence Band Maxima (VBM)

The Fermi energy (E_F) of a semiconductor material can be calculated theoretically using the empirical formula⁴:

```
E_{\rm F} = \chi - E_{\rm c} \tag{1}
```

Here, χ is the absolute electronegativity and E_c is the free electron energy on hydrogen scale (approximately 4.5 eV). For compound semiconductors, χ is calculated using the geometric mean of constituent atoms' absolute electronegativity.⁵ Usually for semiconductor, Fermi energy denotes the

midlevel of the gap between CBM and VBM. Hence, the CBM and VBM of a semiconductor can be calculated using the following equations:

 $CBM = E_F - 0.5E_g$ (2) $VBM = E_F + 0.5E_g$ (3)

Here, E_g denotes the bandgap energy.

The calculated values of χ , E_F, CBM and VBM for α -Fe₂O₃, ZnO and MoS₂ nanosheets are presented in Table S3. For α -Fe₂O₃, the experimentally obtained bandgap (E_g) value is used whereas for ZnO and few-layer MoS₂ nanosheets, we have considered the bandgap values as reported by previous investigations.^{6,7}

Table S3 Obtained values of absolute electronegativity (χ), bandgap energy (E_g), Fermi energy (E_F), CBM and VBM of α -Fe₂O₃, ZnO and few-layer MoS₂ nanosheets.

Material	χ (eV)	E _g (eV)	E _F (eV)	CBM (eV)	VBM (eV)
α -Fe ₂ O ₃	5.88618	1.87	1.386	0.451	2.321
ZnO	5.79250	3.37	1.293	-0.393	2.978
MoS ₂ Nanosheets	5.32372	1.25	0.824	0.199	1.449

Photocatalytic water splitting

Fig. S4 Schematic of proposed photocatalytic water splitting mechanism using ultrasonicated MoS_2 incorporated α -Fe₂O₃/ZnO nanocomposite as catalyst under solar light irradiation

References

- 1. S. Min and G. Lu, J. Phys. Chem. C, 2012, 116, 25415-25424.
- 2. H. Katsumata, Y. Tachi, T. Suzuki and S. Kaneco, RSC Adv., 2014, 4, 21405-21409.
- 3. L. Wu, S. Shi, Q. Li, X. Zhang and X. Cui, Int. J. Hydrog. Energy, 2019, 44, 720-728.
- 4. Y. Cui, S. M. Goldup and S. Dunn, RSC Adv., 2015, 5, 30372-30379.
- 5. R. G. Pearson, Inorganic chem., 1988, 27, 734-740.
- 6. S. Das, A. M. Tama, S. Dutta, M. S. Ali and M. A. Basith, *Mater. Res. Express*, 2019. DOI:10.1088/2053-1591/ab57dd
- 7. V. Srikant and D. Clarke, J. Appl. Phys., 1998, 83, 5447-5451.