## **Supporting Information**

## Biomass soybean straw derived Fe-N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media

Yong Liu,\*<sup>a</sup> Miaojun Su,<sup>a</sup> Dahuan Li,<sup>a</sup> Shenshen Li,<sup>a</sup> Xiying Li,<sup>a</sup> Junwei Zhao,<sup>a</sup> Fujian

Liu\*<sup>b</sup>

<sup>a</sup> Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China. E-mail: liuyong79@126.com

<sup>b</sup> National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, 350002, P. R. China. E-mail: fjliu@fzu.edu.cn



**Fig. S1.** SEM images of soybean straw mixed with magnesia before (a) and after calcination (b)



Fig. S2. SEM images of PC (a), N-PC (b) and Fe-PC (c)



Fig. S3. XRD patterns of PC (a), N-PC (b) and Fe-PC (c)



Fig. S4. N 1s spectra of PC (a), N-PC (b), Fe-PC (c), and Fe 2p spectra of Fe-PC (d).



Fig. S5. The CV curves of a series of soybean straw catalysts were studied in a saturated  $O_2$  solution of 0.1 M KOH (a) and 0.1 M HCIO<sub>4</sub> (b).



Fig. S6. RRDE ring current and disk current of Fe-N-PC and Pt/C measured at 0.1 M KOH (a) and 0.1 M HCIO<sub>4</sub> (b).



**Fig. S7.** Cycling stabilities of Fe-N-PC and Pt/C catalysts in O2-saturated 0.1 M KOH solution (a) and 0.1 M HCIO<sub>4</sub> solution (b).

| Samples                       | E <sub>onset</sub> (V vs.RHE) | E <sub>1/2</sub> (V <i>vs</i> .RHE) | Electrolyte |
|-------------------------------|-------------------------------|-------------------------------------|-------------|
| PC                            | 0.882                         | 0.755                               | 0.1 M KOH   |
| N-PC                          | 0.896                         | 0.759                               | 0.1 M KOH   |
| Fe-PC                         | 0.899                         | 0.765                               | 0.1 M KOH   |
| Fe-N-PC                       | 0.989                         | 0.854                               | 0.1 M KOH   |
| Pt/C                          | 0.984                         | 0.827                               | 0.1 M KOH   |
| Fe14NDC-9 <sup>[1]</sup>      | 0.968                         | 0.888                               | 0.1 M KOH   |
| FeN/C-800 <sup>[2]</sup>      | 0.923                         | 0.809                               | 0.1 M KOH   |
| Fe-N-C-AH <sup>[3]</sup>      | 0.942                         | 0.848                               | 0.1 M KOH   |
| Fe-CZIF-800-10 <sup>[4]</sup> | 0.982                         | 0.830                               | 0.1 M KOH   |

**Table S1.** The ORR performance parameters of different catalysts under alkaline conditions were compared.

**Table S2.** The ORR performance parameters of different catalysts under acidic conditions were compared.

| Samples                                                                 | E <sub>onset</sub> (V vs.RHE) | E <sub>1/2</sub> (V <i>vs</i> .RHE) | Electrolyte                          |
|-------------------------------------------------------------------------|-------------------------------|-------------------------------------|--------------------------------------|
| PC                                                                      | 0.709                         | 0.481                               | 0.1 M HClO <sub>4</sub>              |
| N-PC                                                                    | 0.721                         | 0.503                               | 0.1 M HClO <sub>4</sub>              |
| Fe-PC                                                                   | 0.784                         | 0.552                               | 0.1 M HClO <sub>4</sub>              |
| Fe-N-PC                                                                 | 0.886                         | 0.754                               | 0.1 M HClO <sub>4</sub>              |
| Pt/C                                                                    | 0.934                         | 0.802                               | 0.1 M HClO <sub>4</sub>              |
| 5% Fe-N/C <sup>[5]</sup>                                                | 0.861                         | 0.735                               | $0.5 \text{ M H}_2 \text{SO}_4$      |
| Co-N-GA <sup>[6]</sup>                                                  | 0.88                          | 0.73                                | $0.5 \text{ M H}_2 \text{SO}_4$      |
| (Fe, Fe) <sub>2</sub> +N <sub>2</sub><br>/H <sub>2</sub> <sup>[7]</sup> | 0.88                          | 0.75                                | 0.5 M H <sub>2</sub> SO <sub>4</sub> |
| Fe-N-CC <sup>[8]</sup>                                                  | 0.80                          | 0.52                                | $0.5 \mathrm{~M~H_2SO_4}$            |

## References

- M. Hoque, S. Zhang, M. L. Thomas, Z. Li, S. Suzuki, A. Ando, M. Yanagi, Y. Kobayashi, K. Dokko and M. Watanabe, *J. Mater. Chem. A* 2018, 6, 1138-1149.
- 2 L. Lin, Q. Zhu and A.-W.Xu, J. Am. Chem. Soc. 2014, 136, 11027-11033.
- 3 Z. Qian, Z. Hu, Z. Zhang, Z. Li, M. Dou and F. Wang, *Catal. Sci. Technol.* 2017, 7, 4017-4023.
- 4 G. Li, J. Zhang, W. Li, K. Fan and C. Xu, Nanoscale 2018, 10, 9252-9260.
- 5 Q. Lai, L. Zheng, Y. Liang, J. He and J. Zhao, ACS Catal. 2017, 7, 1655-1663.
- 6 X. Fu, J.-Y. Choi, P. Zamani, G. Jiang, M. A. Hoque, F. M. Hassan and Z. Chen, ACS Appl. Mater. Interfaces 2016, 8, 6488-6495.
- 7 U. I. Kramm, I. Herrmann-Geppert, J. Behrends, K. Lips, S. Fiechter and P. Bogdanoff, J. Am. Chem. Soc. 2016, 138, 635-640.
- 8 G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla and M.-M. Titirici, ACS Nano 2016, 10, 5922-5932.