Supplementary Material: Mechanochemistry-Assisted Hydrolysis of Softwood over Stable Sulfonated Carbon Catalysts in a Semi-Batch Process

David Scholz, Jingwei Xie, Oliver Kröcher and Frédéric Vogel

1. Physicochemical characterization of catalyst

Figure 1. (A) FTIR spectra of carbonized (–), sulfonated (–) and hydrothermally treated (–) catalyst samples. **(B)** XRD patterns of carbonized (–), sulfonated (–) and hydrothermally treated (–) catalyst samples. **(C)** Raman spectra of sulfonated (–) and hydrothermally treated (–) catalyst samples. **(D)** Krypton adsorption/desorption isotherms of sulfonated (\blacksquare/\square) and hydrothermally treated (\blacksquare/\square) catalyst samples.

2. Physicochemical properties of catalyst

Table 1. Physicochemical properties of catalyst samples. [a] Determined using elemental analysis. [b] Calculated from the sulphur content. [c] Determined using Krypton physisorption. [d] Determined using laser diffraction. BM denotes ball-milled.

Sample	C [%] ^[a]	H [%] ^[a]	O [%] ^[a]	-SO₃H	BET Area	Particle
				[µmol g ⁻¹] ^[b]	[m ² g ⁻¹] ^[c]	size
						[µm] ^[d]
C-350	74.9±0.2	3.9±0.1	21.1±0.1	0	n.A.	56.4
C-350-SO₃H	54.5±1.1	3.5±0.2	36.5±0.2	2068±57	2.1	52.8
C-350-SO₃H-HT	63.2±1.1	3.4±0.1	31.8±1.0	869±29	2.2	27.6
C-350-SO ₃ H-HT-BM	57.0	2.9	37.5	788	n.A.	12.5

3. Yields, temperature profile and flow-rate during hydrolysis of cellulose over C-350-SO₃H-HT

Figure 2: Yields of oligosaccharides (\blacksquare), monosaccharides (\blacksquare) and dehydration products (\blacksquare) achieved with pristine cellulose in presence of C-350-SO₃H-HT. Reaction conditions: 165 °C, 6.5 h, 3 wt% cellulose, S/C = 7/2, 1 mm EDTA & 15-C-5, τ = 35 min., impeller speed = 600 rpm.

4. Influence of the impeller speed on the conversion of cellulose in presence of C-350-SO₃H-HT

Figure 3: Conversion (\blacksquare) and yields of oligosaccharides (\blacksquare), monosaccharides (\blacksquare) and dehydration products (\blacksquare) achieved during the hydrolysis of cellulose in presence of EDTA and 350-SO₃H-HT at different impeller speeds. Reaction conditions: 165°C, 6.5 h, 3 wt% cellulose, S/C = 7/2, 1 mM EDTA & 15-C-5, τ = 35 minutes.

5. Full width at half maximum (FWHM) of deconvoluted diffraction peaks

Table 2. FWHM of the deconvoluted diffraction peaks determined for the crystal planes in cellulose.

Sample	FWHM	FWHM	FWHM	FWHM	FWHM
	(101)/°	(1 0 ¹)/°	(0 2 1) / °	(0 0 2) / °	(0 0 4) / °
Cellulose	2.43	2.04	1.42	1.46	1.88
BM-1 h	2.28	2.04	2.74	1.47	1.73
BM-4 h	2.68	3.42	3.14	1.41	1.70
BM-8 h	2.87	4.36	4.40	1.39	1.72
BM-18 h	3.54	4.98	4.20	1.27	1.74
BM-54 h	3.52	6.59	4.85	1.23	2.46

6. Properties of pre-treated cellulose samples

Sample	Conversion	Yield:	Particle size	Crystallite	CI	Solubility
	/ %	O-M-D*/ %	(d _{50,V}) / μm	size /nm	/%	– yield / %
Cellulose	15.2	6.1/7.1/0.1	50.8	4.8	65.3	0.05 ± 0.01
BM-1 h	16.6	2.5/9.7/0.4	22.4	4.3	64.7	0.19 ± 0.01
BM-4 h	17.3	4.8/11.3/0.4	20.5	3.9	59.2	0.27 ± 0.01
BM-8 h	22.5	6.1/13.6/0.7	21.8	3.6	59.1	0.32 ± 0.02
BM-18 h	27.2	7.8/15.9/0.8	24.6	3.5	57.4	0.41 ± 0.01
BM-54 h	32.9	9.2/19.5/0.9	22.4	3.5	56.5	0.79 ± 0.02
BM-18 h + 5% H ₂ O	34.0	12.0/19.4/0.9	43.4	3.4	52.0	0.53 ± 0.01
Amorphous cellulose	27.1	14.8/10.4/0.6	93.3	2.2	20.1	0.95 ± 0.36

Table 3. Properties, conversion and reaction yields achieved with pre-treated cellulose in presence of C-350-SO₃H-HT. Reaction conditions: 165 °C, 6.5 h, 3 wt% pre-treated cellulose, S/C = 7/2, 1 mM EDTA & 15-C-5, τ = 35 min., impeller speed = 600 rpm. * O: Oligosaccharides, M: Monosaccharides and D: Dehydration products. BM denotes ball-milled.

7. Crystallinity index, particle size and SEM images of ball-milled cellulose

Figure 4. (A) Crystallinity index (\diamond), **(B)** SEM images and **(C)** particle size distribution $(d_{10,v}: \triangle - d_{50,v}: \bigcirc - d_{90,v}: \Box)$ of ball-milled cellulose.

8. Crystallinity index, particle size and SEM images of wet ball-milled cellulose

Figure 5. (A) Crystallinity index (\diamond), (B) SEM images and (C) particle size distribution ($d_{10,V}: \triangle - d_{50,V}: \bigcirc - d_{90,V}: \Box$) of cellulose ball-milled in presence of H₂O.

9. Yields during hydrolysis of wet ball-milled cellulose in presence of C-350-SO₃H-HT

Figure 6. Yields of oligosaccharides (\blacksquare), monosaccharides (\blacksquare), dehydration products (\blacksquare) and total yield (\blacksquare) achieved with wet ball-milled cellulose in presence of C-350-SO₃H-HT. Reaction conditions: 165 °C, 6.5 h, 3 wt% wet ball-milled cellulose, S/C = 7/2, 1 mM EDTA & 15-C-5, τ = 35 min., impeller speed = 600 rpm.

10.FTIR Spectra of pre-treated cellulose samples

Figure 7. FTIR spectra of pristine (–), BM-1 h (–), BM-4 h (–), BM-8 h (–), BM-18 h (–), BM-54 h (–), BM-18 h + 5% H_2O (–) and amorphous cellulose (–) in the 4000-3000 cm⁻¹ wavenumber region.

Figure 8. ESI-MS total ion-chromatograms of soluble species in (A) Cellulose, (B) BM-54 h and (C) CBM-10/1.

12.XRD patterns of cellulose residues recovered after pathway experiments

Figure 9. (A) Powder X-ray diffraction patterns of pristine cellulose (-) and the residue recovered after the auto-hydrolysis experiment (---). (B) Powder X-ray diffraction patterns of cellulose ball-milled for 18 hours (-) and the residue recovered after the auto-hydrolysis experiment (---). (1 - (1 0 1), (2 - (1 0 $\overline{1}$), (3 - (0 2 1), (4 - para-crystalline, (5) - (0 0 2), and (6) - (0 0 4).

13.<u>Measured and calculated XRD pattern of a physical mixture of ball-milled cellulose and ball-milled</u> <u>C-350-SO₃H-HT</u>

Figure 10. XRD diffraction patterns of a physical mixture (S/C = 7/2) of individually ball-milled cellulose and ball-milled C-350-SO₃H-HT (–) and the calculated diffraction pattern of a mixture (S/C = 7/2) of ball-milled cellulose and ball-milled C-350-SO₃H-HT determined by linear combination (–).

14.Liquid phase adsorption of cellobiose onto C-350-SO₃H-HT

Figure 11. Cellobiose adsorption onto C-350-SO₃H-HT. Conditions: 25 °C, 100 mg C-350-SO₃H-HT per 1 mL of 20 mM cellobiose solution.

15. Particle size distribution of the sample CBM -7/2

Figure 12. Particle size distribution of the sample CBM-7/2 measured with laser diffraction.

16. Properties of CBM treated cellulose

Table 4. Properties, conversion and reaction yields achieved with CBM treated cellulose. Reaction conditions: 165 °C, 6.5 h, 3 wt% CBM cellulose, 1 mm EDTA & 15-C-5, τ = 35 min., impeller speed = 600 rpm. *O: Oligosaccharides, M: Monosaccharides and D: Dehydration products. CBM denotes concerted ball-milling.

Sample	Conversion	Product yield:	Particle size	CI	Solubility
	/ %	O-M-D*/ %	(d _{50,V}) / μm	/%	– yield / %
CBM-10/1	21.3	9.4/9/0.6	19.1	36.2	3.9
CBM-7/2	55.3	17.4/35.3/1.2	13.5	31.6	32.4
CBM-2/1	77.8	22.8/44.8/1.5	14.9	28.9	49.2
CBM-1/1	78.2	17.4/50.0/1.4	15.0	24.8	64.1
CBM-7/2 - No sulf.	26.9	12.8/12.3/0.3	7.6	35.9	0.7 ± 0.1
CBM-7/2 - Deac.	35.3	15.4/18.5/0.2	9.9	34.7	1.9 ± 0.4

17. SEM Images and FTIR spectra of fresh and recycled catalyst

Figure 13. (A) SEM images and (B) FTIR spectra of fresh and recycled catalyst.

18. <u>XRD diffraction patterns of CBM treated cellulose prepared at different substrate-to-catalyst</u> ratios

Figure 14. (A) Powder X-ray diffraction patterns of cellulose subjected to CBM treatment at different substrate-to-catalyst ratios, CBM-10/1 (–), CBM-7/2 (–), CBM-2/1 (–) and CBM-1/1 (–).