Electronic Supplementary Information (ESI) for:

Two d¹⁰ luminescent metal organic frameworks as dual functional luminescent sensors for (Fe³⁺, Cu²⁺) and 2,4,6-trinitrophenol(TNP) with high selectivity and sensitivity

Xiaojing Zhou,*^a Xiaolei Guo,^b Lili liu,^a Haidong Zhai,^a Qingguo Meng,^a Zhan shi,^b Xishi Tai,*^a

 ^aSchool of chemical & Chemical Engineering and enviromental engineering ,Weifang University, Weifang, 261061, P. R China
^bState Key Laboratory of Inorganic Synthesis & Preparative Chemistry,College of Chemistry, Jilin University, Changchun, 130012, P. R China

Tuble 51. Selected bond distances (1) and diffees (1) for 1				
Cd1-O1	2.187(4)	Cd2-O5 ⁱⁱⁱ	2.228(3)	
Cd1-O5 ⁱ	2.284(3)	Cd2-O5	2.228(3)	
Cd1-N2	2.314(4)	Cd2-O2 ^{iv}	2.261(4)	
Cd1-N3	2.321(4)	Cd2-O2 ^v	2.261(4)	
Cd1-O4 ⁱⁱ	2.437(4)	Cd2-O4 ^{vi}	2.288(4)	
Cd1-O3 ⁱⁱ	2.443(4)	Cd2-O4 ^{vii}	2.288(4)	
O1-Cd1-O5 ⁱ	104.49(15)	O5 ⁱⁱⁱ -Cd2-O5	180.0	
O1-Cd1-N2	165.48(15)	O5 ⁱⁱⁱ -Cd2-O2 ^{iv}	86.50(14)	
O5 ⁱ -Cd1-N2	82.81(15)	O5-Cd2-O2 ^{iv}	93.50(14)	
O1-Cd1-N3	95.32(16)	O5 ⁱⁱⁱ -Cd2-O2 ^v	93.50(14)	
O5 ⁱ -Cd1-N3	124.17(14)	O5-Cd2-O2 ^v	86.50(14)	
N2-Cd1-N3	70.33(16)	O2 ^{iv} -Cd2-O2 ^v	180.0	
O1-Cd1-O4 ⁱⁱ	102.48(14)	O5 ⁱⁱⁱ -Cd2-O4 ^{vi}	103.78(13)	
O5 ⁱ -Cd1-O4 ⁱⁱ	72.30(13)	O5-Cd2-O4 ^{vi}	76.21(13)	
N2-Cd1-O4 ⁱⁱ	91.65(15)	O2 ^{iv} -Cd2-O4 ^{vi}	87.44(16)	
N3-Cd1-O4 ⁱⁱ	151.79(14)	O2v-Cd2-O4vi	92.56(16)	
O1-Cd1-O3 ⁱⁱ	93.29(16)	O5 ⁱⁱⁱ -Cd2-O4 ^{vii}	76.22(13)	
O5 ⁱ -Cd1-O3 ⁱⁱ	125.45(13)	O5-Cd2-O4 ^{vii}	103.79(13)	
N2-Cd1-O3 ⁱⁱ	92.47(16)	O2 ^{iv} -Cd2-O4 ^{vii}	92.56(16)	
N3-Cd1-O3 ⁱⁱ	104.30(15)	O2v-Cd2-O4vii	87.44(16)	
O4 ⁱⁱ -Cd1-O3 ⁱⁱ	53.46(13)	O4vi-Cd2-O4vii	180.0	

Table S1. Selected bond distances (Å) and angles (°) for 1

Symmetry transformations used to generate equivalent atoms: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) -x-1/2, -y+3/2, -z+1; (iv) -x+1/2, -y+3/2, -z+1; (v) x-1, y, z; (vi) x-1/2, -y+3/2, z+1/2; (vii) -x, y, -z+1/2; (viii) x-1/2, -y+3/2, z-1/2;

Zn1-O2 ⁱ	2.018(2)	Zn2-O4 ⁱⁱⁱ	1.983(3)
Zn1-O2	2.018(2)	Zn2-O1	2.010(2)
Zn1-O3 ⁱⁱ	2.103(2)	Zn2-O5 ^v	2.107(2)
Zn1-O3 ⁱⁱⁱ	2.103(2)	Zn2-N1	2.115(3)
Zn1-O5 ^{iv}	2.160(2)	Zn2-N2	2.189(3)
Zn1-O5 ^v	2.160(2)	Zn2-O6 ^v	2.381(3)
O2 ⁱ -Zn1-O2	179.999(1)	O4 ⁱⁱⁱ -Zn2-O1	97.55(11)
O2 ⁱ -Zn1-O3 ⁱⁱ	92.83(10)	O4 ⁱⁱⁱ -Zn2-O3 ⁱⁱ	98.32(10)
O2-Zn1-O3 ⁱⁱⁱ	87.17(10)	O1-Zn2-O5 ^v	103.51(9)
O2 ⁱ -Zn1-O3 ⁱⁱⁱ	87.17(10)	O4 ⁱⁱⁱ -Zn2-N1	110.29(12)
O2-Zn1-O3 ⁱⁱⁱ	92.83(10)	O1-Zn2-N1	92.47(11)
O3 ⁱⁱ -Zn1-O3 ⁱⁱⁱ	180.0	O5 ^v -Zn2-N1	145.06(11)
O2 ⁱ -Zn1-O5 ^{iv}	91.93(9)	O4 ⁱⁱⁱ -Zn2-N2	86.21(12)
O2-Zn1-O5 ^{iv}	88.07(9)	O1-Zn2-N2	168.04(11)
O3 ⁱⁱ -Zn1-O5 ^{iv}	92.29(9)	O5 ⁱ -Zn2-N2	87.08(10)
O3 ⁱⁱⁱ -Zn1-O5 ^{iv}	87.71(9)	N1-Zn2-N2	75.59(12)
O2 ⁱ -Zn1-O5 ^v	88.07(9)	O4 ⁱⁱⁱ -Zn2-O6 ^v	156.16(10)
O2-Zn1-O5 ^v	91.93(9)	O1-Zn2-O6 ^v	93.76(10)
O3 ⁱⁱ -Zn1-O5 ^v	87.71(9)	O5 ^v -Zn2-O6 ^v	58.50(9)
O3 ⁱⁱⁱ -Zn1-O5 ^v	92.29(9)	N1-Zn2-O6 ^v	90.03(11)
O5 ^{iv} -Zn1-O5 ^v	180.00(14)	N2-Zn2-O6 ^v	87.01(10)

Table S2. Selected bond distances (Å) and angles (°) for 2

Symmetry transformations used to generate equivalent atoms: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y, -z+1; (v) x, y + 1, z; (vi) x, y-1, z+1/2; (vii) x+1, y, z.

Fig.S1 a) The emission of the original compound 1 emulsion and after the addition of 1000 uL Na⁺ (0.01 M) solution; b) The emission of the original compound 1 emulsion and after the addition of 1000 uL Zn²⁺ (0.01 M) solution

Fig.S2 a) The emission of the original compound 2 emulsion and after the addition of 1000 uL Cd²⁺ (0.01 M) solution; b) The emission of the original compound 2 emulsion and after the addition of 1000 uL Na⁺ (0.01 M) solution; c) The emission of the original compound 2 emulsion and after the addition of 1000 uL Zn²⁺ (0.01 M) solution

Fig.S3 a) The PXRD of compound 1 and after the detection of the metal ions; b) The PXRD of compound 2 and after the detection of the metal ions

Fig. S4 Stern-Volmer plots of I_0/I vs. the concentration of Fe³⁺ ion of compound 1

Fig. S5 Stern-Volmer plots of $I_0\!/I$ vs. the concentration of Cu^{2+} ion of compound 1

Fig. S6 Stern-Volmer plots of I_0/I vs. the concentration of Fe^{3+} ion of compound 2

Fig. S7 Stern-Volmer plots of I_0/I vs. the concentration of Cu^{2+} ion of compound 2

Fig. S8 a) Five circle PXRD experiments of compound 1 after sensing Fe³⁺; b) Five circle PXRD experiments

of compound 1 after sensing Cu²⁺; c) Five circle PXRD experiments of compound 1 after sensing TNP

Fig. S9 a) Five circle PXRD experiments of compound 2 after sensing Fe³⁺; b) Five circle PXRD experiments of compound 2 after sensing Cu²⁺; c) Five circle PXRD experiments of compound 2 after sensing TNP

Fig. S10 a)Five circle test of compound 1a towards sensing Fe³⁺ in DMF; b) Five circle test of compound 1a towards sensing Cu²⁺ in DMF; c) Five circle test of compound 1a towards sensing TNP in DMF

Fig. S11 a)Five circle test of compound 1b towards sensing Fe³⁺ in DMF; b) Five circle test of compound 1b towards sensing Cu²⁺ in DMF; c) Five circle test of compound 1b towards sensing TNP in DMF

Fig. S12 Stern-Volmer plots of I_0/I vs. the concentration of TNP of compound 1

Fig. S13 Stern-Volmer plots of $I_0\!/I$ vs. the concentration of ~~ TNP of compound 2

Fig. S14 The PXRD of compound 1

Fig. S16 The IR spectrum of compound 1

Fig. S17 The IR spectrum of compound 2

Fig. S18 TGA of compounds 1 and 2

To investigate the thermal stability of compound 1 and 2, thermogravimetric analysis (TGA) was performed under N₂ atmosphere. The results indicate that compound 1 may completely release the guest molecules up to 280 °C. It shows two distinct weight losses of 30-74 °C (5.4 %) and 74-281 °C (13.6 %), attributing to the loss of one water, one CH₃CH₂OH and three DMF molecules, respectively, as to compound 2, it released four DMF, one H₂O, one CH₃CH₂OH melecules at 216 °C (22 %).