Supporting Information for

Optoelectronic, Femtosecond Nonlinear Optical Properties

and Excited State Dynamics of a Triphenyl Imidazole

Induced Phthalocyanine Derivative

Somdatta Bhattacharya, ${ }^{\text {a }}$ Chinmoy Biswas, ${ }^{\text {b }}$ Sai Santosh Kumar Raavi, ${ }^{\text {b }}$ Jonnadula
Venkata Suman Krishna, ${ }^{\mathbf{c}}$ Devulapally Koteshwar, ${ }^{\mathbf{c}}$ Lingamallu Giribabu*, $\mathbf{c , d}$ and Soma
Venugopal Rao*,a
aAdvanced Center for Research in High Energy Materials (ACRHEM), University of Hyderabad, South Campus, University of Hyderabad, Hyderabad 500046, Telangana, India. bUltrafast Photophysics and Photonics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502285, Hyderabad, Telangana, India.
cPolymers \& Functional Materials Division, Tarnaka, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
${ }^{\mathrm{d}}$ Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
*Authors for Correspondence: giribabu_l@yahoo.com (Lingamallu Giribabu), soma_venu@uohyd.ac.in (Soma Venugopal Rao)
Table of Contents

S. No.		Page No.
$\mathbf{1}$	Figure S1: ESI-MS of PBIPN	S2
$\mathbf{2}$	Figure S2: ${ }^{1}$ H NMR of PBIPN	S2
$\mathbf{3}$	Figure S3: FT-IR of PBIPN	S3
$\mathbf{4}$	Figure S4: MALDI-TOF of PBIPC	S3
$\mathbf{5}$	Figure S5: FT-IR of PBIPC	S4
$\mathbf{6}$	Figure S6: Absorption spectrum PBIPC in DMF (low concentration).	S4
$\mathbf{7}$	Figure S7: Absorption spectral changes of PBIPC in DCM at different concentrations	S5
$\mathbf{8}$	Figure S8:Theoretical absorption spectra of PBIPC by using B3LYP method PCM model in tetrahydrofuran solvent with M06-2X function.	S5
$\mathbf{9}$	Figure S9:Fluorescence decay signals of PBIPC in different solvents. Solid line is a fit to the experimental data.	S6
$\mathbf{1 0}$	Figure S10:Optimized structure of PBIPC and minimum energy in kcal/molby using B3LYP method6-31G(d,p).	S6
$\mathbf{1 1}$	Table S1:Optimized energies, HOMO-LUMO energies and ground state dipolemoment by DFT studies by using B3LYP/6-31G (d,p) in vacuum.	S7
$\mathbf{1 2}$	Table S2:Singlet excited state properties of PBIPC by B3LYP method and M06-2X function in tetrahydrofuran solvent in PCM model.	S7

Figure S1. ESI-MS of PBIPN

Figure S2. 1H NMR of PBIPN

Figure S3. FT-IR of PBIPN

Figure S4. MALDI-TOF ofPBIPC

Figure S5. FT-IR of PBIPC

Figure S6. Absorption spectrum of PBIPC in DMF solvent (low concentration).

Figure S7. Absorption spectral changes of PBIPC in DCM at different concentrations: $3 \mu \mathrm{M}$ (b) $5 \mu \mathrm{M}$ (c) $8 \mu \mathrm{M}$ (d) $10 \mu \mathrm{M}$ (e) $20 \mu \mathrm{M}$ (f) $25 \mu \mathrm{M}$

Figure S8. Absorption (left) and emission (right) spectra of PBIPC in the THF solvent. Simulated absorption bands are shown as vertical bars.

Figure S9. Fluorescence decay signals of PBIPC in different solvents. Solid lines are fits to the experimental data.

Figure S10. Optimized structure of PBIPC and minimum energy in kcal/molby using B3LYP method6-31G(d,p).
Table S1. Optimized energies, HOMO-LUMO energies and ground state dipole moment by DFT studies by using B3LYP/6-31G (d, p) in vacuum.

Sample	\mathbf{E} $\mathbf{K c a l} / \mathbf{m o l}$	$\mathbf{H O M O} \mathbf{(H)}$ $\mathbf{e V}$	$\mathbf{L U M O}(\mathbf{L})$ $\mathbf{e V}$	$\mathbf{H - L} \mathbf{g a p}$ $\mathbf{e V}$	$\boldsymbol{\mu}$
PBIPC	-5238444	-4.830	-2.871	-1.959	7.7584

Table S2. Singlet excited state properties of CBZPC1and CBZPC2 obtained by B3LYP method and M06-2X function in tetrahydrofuran solvent in PCM model.

Dye	${ }^{\mathrm{a}} \lambda$	${ }^{\text {b }}$	${ }^{\text {c }}$ E (eV)	\% of Molecular Orbital Contribution
PBIPC	$\begin{aligned} & 677 \\ & 622 \\ & 392 \end{aligned}$	$\begin{gathered} 0.9429 \\ 1.4177 \\ 0.1049 \end{gathered}$	$\begin{aligned} & 1.867 \\ & 1.974 \\ & 3.156 \end{aligned}$	```HOMO->LUMO (95\%) HOMO->L+1 (94\%) H-18->LUMO (2\%) H-3->LUMO (52\%) H-7->LUMO (7\%), H-6->LUMO (5\%), H-6->L+1 (4\%), H-5->LUMO (2\%), H-2->L+1 (4\%), H- \(1->\) LUMO (5\%), H-1->L+1 (5\%)```

${ }^{\mathrm{a}}$ Theoretical absorbance in nm, ${ }^{\mathrm{b}}$ Oscillator strength, and ${ }^{\text {c }}$ Excited state energy in eV .

Z-scan data fit formulae:

Open aperture transmittance:

$$
\mathrm{T}_{\mathrm{nOA}}=\frac{1}{\left[1+(n-1) \alpha_{n} L^{\prime}\left[\frac{I_{0}}{\left(1+\frac{Z}{z_{0}}\right)^{2}}\right]^{(n-1)}\right]^{\frac{1}{(n-1)}}}
$$

Eqn. 1

Where $\mathrm{n}=1,2, \ldots, \mathrm{n} ; \alpha_{\mathrm{n}}=\mathrm{n}$ photon absorption co-efficient; Effective length, $\mathrm{I}_{0}=$ input peak intensity; $\mathrm{z}_{0}=$ Rayleigh range at wavelength $\lambda(\mathrm{nm})$.

$$
L^{\prime}=1-\frac{\mathrm{e}^{-(n-1) \alpha_{0} L}}{(n-1) \alpha_{0}}
$$

Closed aperture transmittance:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{CA}}=1 \pm \frac{4 \Delta \phi\left(\frac{z}{z_{0}}\right)}{\left[\left(\frac{z}{z_{0}}\right)^{2}+9\right]\left[\left(\frac{z}{z_{0}}\right)^{2}+1\right]} \tag{Eqn. 2}
\end{equation*}
$$

$\Delta \varphi$ is obtained from fitted curve and then nonlinear refractive index n_{2} is calculated as:

$$
n_{2}=\frac{\Delta \phi \lambda}{2 \pi L^{\prime} I_{0}}
$$

Eqn. 3

The third order non linear susceptibility, $\chi^{(3)}=\left[\left(\chi_{R}{ }^{(3)}\right)^{2}+\left(\chi_{I}^{(3)}\right)^{2}\right]^{1 / 2}$

$$
\begin{align*}
& \chi_{R}^{(3)}=2 c n_{0}^{2} \varepsilon_{0} n_{2} \tag{Eqn. 4}\\
& \chi_{I}^{(3)}=\frac{c^{2} \varepsilon_{0} n_{0}^{2} \alpha_{2}}{\omega}
\end{align*}
$$

Where, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \varepsilon_{0}=$ absolute permittivity; $\omega=$ frequency of laser radiation. The n -photon absorption cross-sections are calculated as:

$$
\begin{equation*}
\sigma_{n}=\frac{(\hbar \omega)^{n-1}}{N} \alpha_{n} \tag{Eqn. 5}
\end{equation*}
$$

$\mathrm{N}=$ solute molecule concentration.
Example: For $\mathbf{8 0 0} \mathbf{~ n m}$, the average power used was 0.4 mW with beam radius of 1 mm and focusing lens of 10 cm focal length. Thus, the Rayleigh range, Z_{0} was calculated to be 2.54 mm .

Effective length,

$$
L^{\prime}=\frac{1-\mathrm{e}^{-0.354}}{0.354} c m=0.084
$$

Peak intensity,
$I_{0}=\frac{0.4 \times 10^{-3}}{\pi \times(0.0025)^{2} \times 70 \times 10^{-15} \times 10^{3}} \frac{\mathrm{w}}{\mathrm{cm}^{2}} \quad=2.8 \times 10^{11} \quad \mathrm{~W} / \mathrm{cm}^{2}$

For 800 nm , we observe two-photon absorption hence, $\mathrm{n}=2$. Putting above parameters in Eqn. 1, we fit it with experimental open aperture z-scan data to obtain NLO absorption coefficient, $\boldsymbol{\alpha}_{\boldsymbol{2}}$ to be $\mathbf{1 2 . 0} \times \mathbf{1 0}^{-\mathbf{1 1}}$ $\mathbf{c m} / \mathbf{W}$. Similarly, from Eqn. 2, we can obtain the value of $\Delta \Phi$ which was obtained to be 0.17 . Putting this value to Eqn. 3, the nonlinear refractive index obtained was:
$n_{2}=\frac{0.17 \times 8 \times 10^{-5}}{2 \pi \times 0.084 \times 2.8 \times 10^{11}}=0.92 \times 10^{-16} \quad \mathrm{~cm}^{2} / \mathrm{W}$
Using Equation 4 the value of NLO susceptibilities were calculated and tabulated in Table 2.
The two-photon absorption cross-section was calculated using equation 5 where no. of molecules in 0.07 mM of sample is given by,
$N=0.07 \times 10^{-3} \times 6.02 \times 10^{23}=4.21 \times 10^{19} \quad$ Molecules.
Thus, 2PA cross-section was calculated as,

$$
\begin{aligned}
\sigma_{2}=\frac{6 \cdot 62 \times 10^{-34} \times 3 \times 10^{8} \times 12 \times 10^{-11}}{8 \times 10^{-7} \times 4 \cdot 21 \times 10^{14} \times 10^{-3}} & =7.08 \times 10^{-47} \quad \mathrm{~cm}^{4} \text { s photon }{ }^{-1} \text { molecule }^{-1} \\
& =7080 \mathrm{GM}
\end{aligned}
$$

$$
1 \mathrm{GM}=10^{-50} \mathrm{~cm}^{4} \mathrm{~s} \text { photon }{ }^{-1} \text { molecule }{ }^{-1}
$$

For $\lambda=\mathbf{1 0 0 0} \mathbf{n m}$, the average power taken was 0.75 mW with Rayleigh range of 3.18 mm . This effective length calculated was 0.072 cm . Rest of the parameters were same as $\lambda=800 \mathrm{~nm}$.

Peak intensity,
$I_{0}=\frac{0.75 \times 10^{-3}}{2 \pi \times 70 \times 10^{-15} \times 10^{3} \times \pi \times(0.0038)^{2}}=3.36 \times 10^{11} \mathrm{~W} / \mathrm{cm}^{2}$
For 1000 nm , we observe three-photon absorption hence, $\mathrm{n}=3$. Putting above parameters in Eqn. 1, we fit it with experimental open aperture z-scan data to obtain NLO absorption coefficient, $\boldsymbol{\alpha}_{3}$ to be $\mathbf{2 . 7 \times 1 0 ^ { - 2 1 }}$ $\mathbf{c m}^{3} / \mathbf{W}^{2}$. Similarly, from Eqn. 2, we can obtain the value of $\Delta \Phi$ which was obtained to be 2.8 . Putting this value to Eqn. 3, the nonlinear refractive index obtained was:

$$
n_{2}=\frac{2.8 \times 10^{-4}}{2 \pi \times 3.36 \times 10^{11} \times 0.072}=18 \cdot 4 \times 10^{-16} \quad \mathrm{~cm}^{2} / \mathrm{W}
$$

The three-photon cross section obtained using equation 5 was,

$$
\begin{gathered}
\sigma_{2}=\frac{\left(6 \cdot 62 \times 10^{-34} \times 3 \times 10^{8}\right)^{2} \times 2.7 \times 10^{-21}}{\left(10^{-6}\right)^{2} \times 4 \cdot 21 \times 10^{19}} \mathrm{~cm}^{6} \mathrm{~s}^{2} \\
=2 \cdot 53 \times 10^{-78} \quad \mathrm{~cm}^{6} \mathrm{~s}^{2}
\end{gathered}
$$

For $\lambda=\mathbf{1 5 0 0} \mathbf{n m}$, the average power taken was 0.7 mW with Rayleigh range of 4.7 mm . This effective length calculated was 0.08 cm . Rest of the parameters were same as $\lambda=800 \mathrm{~nm}$.

Peak intensity,
$I_{0}=\frac{0.75 \times 10^{-3}}{\pi \times(0.0047)^{2} \times 70 \times 10^{-15} \times 10^{3}}=1.4 \times 10^{11} \quad \mathrm{~W} / \mathrm{cm}^{2}$
For 1500 nm , we observe four-photon absorption hence, $\mathrm{n}=4$. Putting above parameters in Eqn. 1, we fit it with experimental open aperture z-scan data to obtain NLO absorption coefficient, $\boldsymbol{\alpha}_{4}$ to be $\mathbf{2 . 2} \times \mathbf{1 0}^{-32}$ $\mathbf{c m}^{5} / \mathbf{W}^{3}$. Similarly, from Eqn. 2, we can obtain the value of $\Delta \Phi$ which was obtained to be 1.35 . Putting this value to Eqn. 3, the nonlinear refractive index obtained was:
$n_{2}=\frac{1.35 \times 1500 \times 10^{-7}}{2 \pi \times 0.08 \times 1.4 \times 10^{11}}=28.9 \times 10^{-16} \mathrm{~cm}^{2} / \mathrm{W}$
The four-photon cross section obtained using equation 5 was,

$$
\begin{gathered}
\sigma_{2}=\left(\frac{6 \cdot 62 \times 10^{-34} \times 3 \times 10^{8}}{1500 \times 10^{-9}}\right)^{3} \times\left(\frac{2 \cdot 2 \times 10^{-32}}{4 \cdot 21 \times 10^{19}}\right) \quad \mathrm{cm}^{8} / \mathrm{s}^{3} \\
=12.13 \times 10^{-108}
\end{gathered}
$$

Femtosecond Transient Absorption Spectroscopy experimental schematic:

Figure S11. Schematic of the fs-TAS setup used for photophysical studies of PBIPC at ACRHEM, University of Hyderabad, India.

Table S3. Decay lifetimes of relaxation dynamics in PBIPC for different wavelengths.

Excitation wavelength	Peak maxima	$\boldsymbol{\tau}_{\mathbf{R}}(\mathbf{p s})$	$\boldsymbol{\tau}_{\mathbf{1}}(\mathbf{p s}), \boldsymbol{\tau}_{\mathbf{2}}(\mathbf{p s})$	$\boldsymbol{\tau}_{\mathbf{3}}(\mathbf{p s})$
400 nm	532 nm	0.131	$5.59,333.9$	1300
	640 nm	0.123	21.02	346
	700 nm	0.241	8.60	1286
	532 nm	1.36	$8,216.3$	1403
	640 nm	1.39	3.62	408
	698 nm	1.32	142	1340

τ_{R} : Rise time; τ_{1} / τ_{2} : shorter decay component showing IC and/ or VC; τ_{3} : longer decay component showing ISC. Error involved is $\pm 10 \%$.

