Supporting information for

Regioselective Ring Expansion Followed By H-shift of 3-Ylidene oxindoles: A Convenient Synthesis of N-substituted/un-substituted Pyrrolo[2,3-c] quinolines and Marinoquinolines

${ }^{\text {a Department }}$ of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India ${ }^{\text {b }}$ Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
${ }^{\text {c }}$ Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India

* Corresponding author:

Bathini Nagendra Babu, Fax: +91-40-27160512; E-mail: bathini@iict.res.in

Contents:

1. General Information
2
2. Experimental procedures and characterization of products
2.1. General procedure for the preparation of N -Substituted-3,5-dihydro- 4 H -pyrrolo [2,3-c]quinolin-4-ones (3aa-3ga):

2
Spectral data of N-Substituted-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-ones
(3aa-3ga):
3-6
2.2. General procedure for the preparation of N-Unsubstituted-3,5-dihydro-4H-pyrrolo
[2,3-c]quinolin-4-ones (4aa-4qa):
7
2.3. Spectral data of N-Unsubstituted-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one
(4aa-4qa) and synthetic route of marinoquinolines (5-8):
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of the compounds (3aa-3ga) $\mathbf{1 2 - 2 7}$
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of the compounds (4aa-8) $\mathbf{2 8 - 4 8}$
5. X-ray Crystallographic Data of compounds 3aa \quad 49-50
6. References $\mathbf{5 0}$

General Information:

General Procedures.

Unless otherwise noted, all reagents were used as received from commercial sources. All air and moisture sensitive reactions were conducted under a nitrogen or argon atmosphere using flame-dried or oven-dried glassware with magnetic stirring. Tetrahydrofuran (THF) was dried over Na, benzophenone and distilled prior to use. Reactions were monitored by thin-layer chromatography carried out on silica plates (silica gel 60 F254, Merck) using UV-light, iodine and p-anisaldehyde for visualization. Column chromatography was carried out using silica gel (60-120 mesh or 100-200 mesh) packed in glass columns. Technical grade EtOAc and petroleum ether used for column chromatography and were distilled prior to use. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Room temperature (r.t.) is $23-25^{\circ} \mathrm{C}$.

Materials. Commercial reagents were purchased from Merck, Alfa, Spectrochem or TCI, and used as received with the following exceptions. Tetrahydrofuran (THF), ethylene glycol dimethyl ether (DME), toluene and 1,4-dioxane were dried over Na with benzophenone-ketyl intermediate as indicator. Dichloroethane (DCE) and Dichloromethane DCM) were distilled over CaH_{2} and acetonitrile ($\mathrm{CH}_{3} \mathrm{CN}$) was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. N, N Dimethylformamide (DMF) was distilled under reduced pressure. Other commercially available reagents and solvents were used without further purification.

Instrumentation. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or DMSO- d_{6} as solvent on Bruker AVANCE 400, INOVA instruments with 300, 400 and 500 MHz frequencies spectrometers. The coupling constant J is given in Hz . Chemical shifts (δ) were reported in ppm relative to the residual solvent signal ($\mathrm{CDCl}_{3} \delta=7.26$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR), DMSO $-\mathrm{d}_{6}\left({ }^{1} \mathrm{H}\right.$ NMR: $\delta=2.54$ and ${ }^{13} \mathrm{C}$ NMR: $\delta=39.52 \mathrm{ppm}$). Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard, or TMS ($\delta=0.0$) as internal standard and signal patterns are indicated as follows: $s=$ singlet, $d=$ doublet, $d d=$ doublet of doublet, $d t=$ doublet of triplet, $t=$ triplet, $q=q u a r t e t, q d=q u a r t e t ~ o f ~ d o u b l e t, ~ m=m u l t i p l e t, ~ b r=b r o a d, ~ t t=$ triplet of triplet. IR spectra were recorded on a Bruker Infrared spectrophotometer and are reported as $\mathrm{cm}-1$. High-resolution mass spectra (HRMS) were recorded on a Waters- spectrometer.TOF

General procedure for the preparation of \boldsymbol{N}-Substituted-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-ones (3aa-3ga):

The 3-ylideneoxindole 1 (0.50 mmol), TosMIC 2a (0.50 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 mmol) (2 equiv) were stirred in 5.0 mL of EtOH was stirred at refluxing temperature for 3 h . Upon the completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with 10 ml of water and extracted with EtOAc (3X10 ml). The organic layers were combined and washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solvent was
removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to afford the desired products(3aa-3ga).

Analytical data for the compounds 3aa-3ga:

Ethyl 5-methyl-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3aa)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3aa was obtained after column chromatography (hexane:EtOAc 6:4) in 70% as a white solid. mp $283-285{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 13.03(\mathrm{~s}, 1 \mathrm{H}), 9.41-9.32(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=10.8$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta 164.48,154.86,137.35,133.76,128.21,127.40,124.82,124.76,122.32,118.06$, 115.88, 111.34, 60.34, 29.49, 14.76. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 271.1077; found:
271.1068.

Ethyl 5-benzyl-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3ab)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 3ab was obtained after column chromatography (hexane:EtOAc 6:4) in 65% as a creamy white solid. mp 290-292 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$) $\delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19-7.02(\mathrm{~m}, 8 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$) $\delta 164.45,155.46,136.72,136.16,133.45,128.58,127.80,127.39$, $126.96,126.25,125.68,124.22,122.13,118.62,115.53,111.59,60.01,45.38,14.33$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 347.1390; found: 347.1381.

Ethyl 4-oxo-5-tosyl-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3ac)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3ac was obtained after column chromatography (hexane:EtOAc 6:4) in 60% as a creamy white solid. mp $158-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.51(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.40(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 164.46,142.69,137.43,134.41,132.08$, 131.13, 129.19, 127.11, 126.30, 124.98, 124.82, 124.35, 120.15, 119.85, 113.07, 58.87, 20.94, 13.96. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 411.1009; found: 411.1001.

Ethyl 8-methoxy-5-methyl-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3ba)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 3ba was obtained after column chromatography (hexane:EtOAc 6:4) in 68% as a creamy white solid. mp 270-275 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 12.93(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.16$ $-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 164.47,154.65,154.47,133.39,131.62,125.12,124.77,119.01$, $116.51,115.50,111.27,110.75,60.17,55.67,29.43,14.74$. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+$ H] ${ }^{+}$: 301.1183; found: 301.1172 .

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound $\mathbf{3} \mathbf{b b}$ was obtained after column chromatography (hexane:EtOAc 6:4) in 65% as a creamy white solid. $\mathrm{mp} 308-310^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 6 \mathrm{H})$, $7.01(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 164.09, 157.36, 154.19, 137.11, 133.65, 130.12, 128.62, 126.96, 126.32, 124.62, 124.31, 118.78, 117.07, 115.08, 110.90, 110.45, 59.98, 55.27, 44.47, 14.26. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 377.1496; found: 377.1491.

Ethyl 8-methoxy-4-oxo-5-tosyl-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3bc)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3 bc was obtained after column chromatography (hexane:EtOAc 6:4) in 58% as a creamy white solid. mp $160-162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 11.45(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-$ $6.35(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 165.07,157.33,142.88,137.88,134.57,129.51,128.64,127.23,126.69$, $125.19,120.96,120.45,117.61,113.23,112.96,59.43,55.59,21.45,14.54$. HRMS calcd for C_{22} $\mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 441.1115; found: 441.1128.

Ethyl 8-fluoro-5-methyl-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3ca)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 3 ca was obtained after column chromatography (hexane:EtOAc 6:4) in 66% as a creamy white solid. mp $333-335^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 13.12(\mathrm{~s}, 1 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31$ (m, 1H), $4.32(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 164.50,158.83,156.48,154.56,134.14,133.92,125.27,124.04,119.21,117.80$, $117.72,115.43,115.20,112.89,112.63,111.34,60.53,29.81,14.73$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{14}$ $\mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 289.0983$; found: 289.0976 .

Ethyl 5-benzyl-8-fluoro-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3cb)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound $\mathbf{3 c b}$ was obtained after column chromatography (hexane:EtOAc 6:4) in 63% as a creamy white solid. mp $340-341^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 13.24(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{dd}, J=11.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.39$ (m, 1H), $7.34-7.17(\mathrm{~m}, 6 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 163.97,158.67,155.53,154.42,136.81,133.83,132.64,128.67$, 127.03, 126.32, 124.46, 123.99, 119.15, 119.01, 117.81, 117.70, 115.01, 114.70, 112.65, 112.31, 110.98, 60.07, 44.69, 14.22. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 365.1296$; found: 365.1289

Ethyl 8-fluoro-4-oxo-5-tosyl-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3cc)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3 cc was obtained after column chromatography (hexane:EtOAc 6:4) in 55% as a creamy white solid. mp $158-160^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 11.52(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 164.07$, 160.92, 157.71, 142.52, 137.25, 134.63, 134.51, 130.29, 129.07, 127.94, 127.82, 126.15, 124.81, 120.01, 119.18, 118.56, 118.26, 113.73, 113.44, 112.87, 58.76, 20.88, 13.88. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{FS}[\mathrm{M}+\mathrm{H}]^{+}$: 429.0915; found: 429.0896.

Ethyl 8-chloro-5-methyl-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3da)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3da was obtained after column chromatography (hexane:EtOAc $6: 4$) in 67% as a creamy white solid. mp $298-300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta 13.10(\mathrm{~s}, 1 \mathrm{H}), 9.43(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $-7.48(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta 164.46,154.62,136.13,134.08,127.71,126.70,126.42,125.17,123.65,119.33$, 117.83, 111.35, 60.58, 29.71, 14.72. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 305.0687; found: 305.0678.

Ethyl 5-benzyl-8-chloro-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3db)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 3db was obtained after column chromatography (hexane:EtOAc 6:4) in 62% as a creamy white solid. mp 286$289^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{-}$) $\delta 13.28(\mathrm{~s}, 1 \mathrm{H}), 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) δ 164.44, 154.98, 137.17, 135.22, 134.50, 129.19, 127.72, 127.56, 126.85, 126.79, 126.70, 124.93, 124.15, 119.77, 118.31, 111.52, 60.62, 45.12, 14.73. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 381.1000; found: 381.1003.

Ethyl 8-chloro-4-oxo-5-tosyl-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3dc)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 3dc was obtained after column chromatography (hexane:EtOAc 6:4) in 58% as a creamy white solid. mp 158$160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}$) $\delta 11.54(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$, 3.98 ($q, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 164.59,143.38,137.68,133.92,133.85,132.09,129.79,129.65,127.38,126.92$, 126.80, 125.51, 120.60, 119.25, 113.63, 59.37, 21.46, 14.41. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl} \mathrm{N}_{2}$ $\mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 445.0619; found :445.1590.

Ethyl 5-benzyl-8-bromo-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(3ea)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3ea was obtained after column chromatography (hexane:EtOAc 6:4) in 61% as a creamy white solid. mp $298-300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d $) \delta 13.28(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=9.0,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 164.46,154.98,137.14,135.59,134.54,130.50$, 129.67, 129.19, 127.56, 126.79, 124.90, 124.06, 120.22, 118.66, 114.90, 111.52, 60.63, 45.08, 14.75. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 425.0495; found: 425.0491 .

1-benzoyl-5-methyl-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(3fa)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 3 fa was obtained after column chromatography (hexane:EtOAc 6:4) in 58% as a pale yellow solid. mp $232-234^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.21(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=5.1,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}$) , $7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.36$ (ddd, $J=8.2,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR(126 MHz, CDCl_{3}) δ 191.80, 155.84, 140.37, 136.90, 135.22, 132.18, 129.69, 128.42, 128.16, 127.72, 126.54, 124.81, 122.93, 120.58, 118.65, 115.06, 29.75. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 303.1128; found: 303.1138.

1-benzoyl-5-benzyl-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(3fb)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound $\mathbf{3 f b}$ was obtained after column chromatography (hexane:EtOAc 8:2) in 53% as a pale yellow solid. mp $212-214^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.93(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 1H), $7.56-7.47$ (m, 3H), $7.45-7.36$ (m, 2H), 7.31 (dd, J = 9.7, 4.6 Hz, 1H), $7.23-7.11$ (m, 5H), 5.76 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 196.22, 160.22, 145.24, 141.82, 141.23, 140.45, $136.86,134.19,133.57,133.22,132.57,132.15,131.96,131.29,130.69,129.69,126.85$, 124.75, 123.41, 120.67, 50.07. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 379.1441; found:
379.1467.

5-methyl-1-phenyl-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(3ga)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 3ga was obtained after column chromatography (hexane:EtOAc 8:2) in 58% as a pale yellow solid. mp $222-224^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.24(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H})$, $7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR(101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 156.00, 136.66, 135.73, 130.01, 128.54, 127.20, 126.66, 125.67, 124.04, 123.11, 122.03, 121.69, 119.44, 115.25, 29.42. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O} \mathrm{N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: = 275.1178; found: 275.1185.

General procedure for the preparation of N-Substituted-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-ones (4aa-4qa):

The 3-ylideneoxindole $\mathbf{1}(0.50 \mathrm{mmol})$, TosMIC $\mathbf{2 a}(0.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.00 \mathrm{mmol})$ (2 equiv) were stirred in 5.0 mL of EtOH was stirred at refluxing temperature for 3 h . Upon the completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with 10 ml of water and extracted with EtOAc $(3 \times 10 \mathrm{ml})$. The organic layers were combined and washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to afford the desired products (4aa-4qa).

Analytical data for the compounds 4aa-4qa:

Ethyl 4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4aa)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4aa was obtained after column chromatography (hexane: EtOAc 6:4) in 88% as a white solid. mp $290-292{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.96(\mathrm{~s}, 1 \mathrm{H}), 11.67(\mathrm{~s}, 1 \mathrm{H}), 9.22(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.37$ ($\mathrm{m}, 2 \mathrm{H}$), 7.22 (dd, $J=8.2,6.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$) $\delta 169.22,159.91,141.24,138.20,132.49,131.65,130.76$, $129.98,126.75,121.91,121.17,116.28,65.04,19.51$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 257.0921; found: 257.0913.

Ethyl 8-methyl-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4ba)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4ba was obtained after column chromatography (hexane:EtOAc 6:4) in 78% as a white solid. mp $276-278^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 12.99(\mathrm{~s}, 1 \mathrm{H}), 11.64(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 163.95,154.54,133.91,132.87,130.23,128.27,126.18,125.31$, 124.83, 116.58, 115.77, 110.98, 59.79, 20.95, 14.27. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 271.1077; found: 271.1068.

Ethyl 8-methoxy-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4ca)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4 ca was obtained after column chromatography (hexane:EtOAc 6:4) in 82% as a creamy white solid. mp $280-282^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $_{3}+$ DMSO-d $_{6}$) $\delta 12.82(\mathrm{~s}, 1 \mathrm{H}), 11.45(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (d, J = 2.8 Hz, 1H), $7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82$ ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 163.93,154.36,154.02$,
132.55, 130.10, 125.63, 125.00, 117.48, 116.79, 115.28, 110.96, 109.21, 59.57, 55.10, 14.21. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15}$ $\mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 287.1026; found: 287.1015.

Ethyl 8-fluoro-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4da)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4da was obtained after column chromatography (hexane:EtOAc 6:4) in 80% as a creamy white solid. mp 326-329${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right) \delta 13.08(\mathrm{~s}, 1 \mathrm{H}), 11.76(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{dd}, J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{-}$) $\delta 164.47,158.62,156.28,154.87,133.60,133.17,125.67$, $125.35,118.09,117.98,117.89,115.52,115.28,112.30,112.04,111.53,60.47,14.72$. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: 275.0826; found: 275.0818.

Ethyl 8-chloro-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4ea)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4 ea was obtained after column chromatography (hexane:EtOAc 6:4) in 78% as a creamy white solid. mp $300-302^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 13.15(\mathrm{~s}, 1 \mathrm{H}), 11.86(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR(75 MHz, DMSO-d $) \delta$ 163.92, 154.44, 134.77, 133.21, 127.04, 125.56, 125.14, 124.39, 117.91, 117.61, 111.07, 59.98, 14.22. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 291.0531; found: 291.0524.

Ethyl 8-bromo-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4fa)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4 fa was obtained after column chromatography (hexane:EtOAc 6:4) in 75% as a creamy white solid. mp 302-304 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 13.15(\mathrm{~s}, 1 \mathrm{H}), 11.85(\mathrm{~s}, 1 \mathrm{H}), 9.50(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.65-$ $7.57(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 164.47,154.96,135.61,133.80,130.30,129.02,125.61,124.79,118.93$, 118.48, 114.05, 111.58, 60.54, 14.76. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 335.0026$; found: 335.0019.

Ethyl 8-nitro-4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4ga)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4gawas obtained after column chromatography (hexane:EtOAc 6:4) in 70% as a pale yellow solid. mp $360-362^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right) \delta 13.28(\mathrm{~s}, 1 \mathrm{H}), 12.26(\mathrm{~s}, 1 \mathrm{H}), 10.28(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ $(\mathrm{s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta 168.99,159.86,146.64,145.96,138.85,130.29,129.85,128.14$, 127.38, 121.86, 121.50, 116.55, 65.37, 19.45. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 302.0771; found302.0791.

Methyl 4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(4ha)

Following the general procedure $\left(80^{\circ} \mathrm{C}\right.$ for 3 h$)$, compound 4 ha was obtained after column chromatography (hexane:EtOAc 6:4) in 80% as a white solid. mp $348-350^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 13.03(\mathrm{~s}, 1 \mathrm{H}), 11.71(\mathrm{~s}, 1 \mathrm{H}), 9.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 164.92,155.15,136.53,133.46$,
127.78, 126.87, 126.05, 125.26, 122.03, 117.14, 116.44, 111.18, 51.84. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 243.0764; found: 243.0756.

1-phenyl-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4ia)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4 ia was obtained after column chromatography (hexane:EtOAc 6:4) in 60% as a creamy white solid. $\mathrm{mp} 310-312^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}\right) \delta 11.42(\mathrm{~s}, 1 \mathrm{H}), 10.48(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.40(\mathrm{~m}$, $4 \mathrm{H}), 6.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.30-6.24(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d ${ }_{6}$) $\delta 155.10,135.54,135.48,129.53,128.34,126.84,125.93,125.46,123.14,122.85$, 122.31, 121.01, 120.63, 117.56, 116.14. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O} \mathrm{N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 261.1022; found:

1-(4-methoxyphenyl)-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4ja)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 4 ja was obtained after column chromatography (hexane:EtOAc $6: 4$) in 58% as a creamy white solid. $\mathrm{mp} 320-322^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 11.43(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 158.36,155.03,135.52,130.79,127.62,125.98,125.44,122.98,122.89$, $122.23,121.09,120.26,117.65,116.08,113.90,55.10$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 291.1128; found: 291.1118.

1-(4-chlorophenyl)-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4ka)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound $\mathbf{4 k a}$ was obtained after column chromatography (hexane:EtOAc 6:4) in 55% as a creamy white solid. mp $328-330^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}^{6}\right.$) $\delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 11.49(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48$ $(\mathrm{m}, 4 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 155.49,136.08,134.98,132.20,131.90,128.99,126.73,126.41,123.82,123.21$, 122.70, 121.78, 119.77, 117.83, 116.73. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O} \mathrm{N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 295.0633; found: 295.0625.

1-(4-nitrophenyl)-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4la)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 4la was obtained after column chromatography (hexane:EtOAc 6:4) in 45% as a pale yellow solid. mp $370-373^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}_{-}$) $\delta 12.66(\mathrm{~s}, 1 \mathrm{H}), 11.55(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.66$ (d, J = 8.0 Hz, 1H), $7.54(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.07-$ $7.00(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 155.42, 146.66, 143.43, 136.17, 130.91, 127.35, 127.06, 124.39, 124.27, 123.14, 122.86, 121.98, 119.26, 117.47, 116.88. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{12}$ $\mathrm{O}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 306.0873; found: 306.0869.

1-(4-methoxybenzoyl)-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4ma)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4 ma was obtained after column chromatography (hexane:EtOAc 6:4) in 57% as a creamy white solid. mp $245-248^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$

NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta 13.12(\mathrm{~s}, 1 \mathrm{H}), 11.80(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.35$ ($\mathrm{m}, 5 \mathrm{H}$), $7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 190.56,159.09,154.81,141.37,136.10$, 135.08, 129.51, 127.37, 126.11, 125.98, 125.12, 121.71, 121.41, 119.45, 117.91, 116.80, 115.99, 113.85, 55.25. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 319.1077; found: 319.1064.

1-(3-chlorobenzoyl)-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4na)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 4 na was obtained after column chromatography (hexane:EtOAc 6:4) in 56% as a creamy white solid. $\mathrm{mp} 275-278^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 11.78(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 189.84,155.27,142.55,136.66,136.24,133.77,132.14,130.86$, $129.08,128.35,127.98,126.67,126.54,125.84,121.95,119.63,117.22,116.50$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 323.0582; found: 323.0574 .

1-(3-methoxy-4-nitrobenzoyl)-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4oa)

Following the general procedure ($80^{\circ} \mathrm{C}$ for 3 h), compound 40 a was obtained after column chromatography (hexane:EtOAc 6:4) in 42% as a pale yellow solid. mp 260$262^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 13.15(\mathrm{~s}, 1 \mathrm{H}), 11.76(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.33(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO$\left.d_{6}\right) \delta 187.29,155.86,146.78,144.44,142.00,139.41,136.10,132.53,131.11,127.11$, 126.21, 123.41, 117.24, 116.40, 115.02, 112.09, 57.85. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~N}_{3}[\mathrm{M}$ $+\mathrm{H}]^{+}: 364.0928$; found: 364.0924.

1-(2-naphthoyl)-8-chloro-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4pa)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 4 pa was obtained after column chromatography (hexane:EtOAc 6:4) in 60% as a creamy white solid. mp 260$263^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 13.26(\mathrm{~s}, 1 \mathrm{H}), 11.93(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}$, $1 \mathrm{H}), 8.17-8.03(\mathrm{~m}, 3 \mathrm{H}), 7.96(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.66$ (m, 2H), $7.48-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 191.01, 154.61, 137.07, 135.76, 134.91, 134.60, 131.97, 130.70, 129.43, 128.18, 127.62, 127.21, 126.82, 125.61, 125.46, 125.34, 124.99, 119.60, 118.13, 117.72. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 373.0738$; found: 373.0734 .

1-(2-naphthoyl)-8-bromo-3,5-dihydro-4H-pyrrolo[2,3-c]quinolin-4-one(4qa)

Following the general procedure ($80{ }^{\circ} \mathrm{C}$ for 3 h), compound 4qa was obtained after column chromatography (hexane:EtOAc 6:4) in 56% as a creamy white solid. mp 290$292^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta 13.27(\mathrm{~s}, 1 \mathrm{H}), 11.94(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.47$ (s, 1H), $8.17-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-$ $7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 190.99,154.62$, 137.09, 135.73, 134.91, 134.60, 131.98, 130.66, 129.41, 128.16, 127.61, 127.19, 126.81, 125.63, 125.47, 125.33, 125.00, 119.61, 118.14, 117.71. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 417.0233$; found: 417.0226 .

Ethyl 4-chloro-3H-pyrrolo[2,3-c]quinoline-1-carboxylate(5)

Following the general procedure (Scheme 5), compound 5 was obtained after column chromatography (hexane:EtOAc $7: 3$) in 85% as a creamy white solid. mp $270-272{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=34.0,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.57(\mathrm{~m}$, $2 \mathrm{H}), 4.48(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta$ 168.92, 148.13, 141.90, 139.78, 133.30, 133.17, 132.09, 131.93, 131.81, 131.07, 128.13, 116.27, 65.03, 19.31. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 275.0582; found: 275.0575.

4-chloro-3H-pyrrolo[2,3-c]quinoline(6)

Following the general procedure (Scheme 5), compound 6 was obtained after column chromatography (hexane:EtOAc $7: 3$) in 70% as a creamy white solid. mp $260-262{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.11$ (dd, J = 3.0, $2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 142.60,136.56$, 130.51, 128.90, 126.88, 126.83, 126.50, 126.04, 123.33, 123.11. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 203.0371$; found: 203.0364.

4-(p-tolyl)-3H-pyrrolo[2,3-c]quinoline(7)

Following the general procedure (Scheme 5), compound 7 was obtained after column chromatography (hexane:EtOAc $7: 3$) in 80% as a creamy white solid. mp $258-260{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08$ (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.63,142.08,139.65$, $134.46,129.80,129.63,129.44,129.18,128.70,128.38,127.25,126.53,125.95,123.02,122.94,102.14$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 259.1230 ;$ found: 259.1222.

4-chloro-3H-pyrrolo[2,3-c]quinoline-1-carboxylic acid(8)

Following the general procedure (Scheme 5), compound 8 was obtained after column chromatography (hexane:EtOAc 5:5) in 76% as a creamy white solid. mp 358-360 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 13.14(\mathrm{~s}, 1 \mathrm{H}), 12.63(\mathrm{~s}, 1 \mathrm{H}), 9.70(\mathrm{dd}, J=6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.02$ (dd, J = 6.8, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 164.77,142.27$, $136.15,135.19,127.80,127.34,126.81,126.24,125.75,122.41,111.21$. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2}$ $\mathrm{N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 247.0269$; found: 247.0264.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3aa:

${ }^{13}$ C-NMR of 3aa:

${ }^{1} \mathrm{H}-$ NMR of 3 ab :

${ }^{13}$ C-NMR of 3ab:

${ }^{1} \mathrm{H}$-NMR of 3ac:

${ }^{13}$ C-NMR of 3ac:

${ }^{1} \mathrm{H}$-NMR of 3ba:

${ }^{13}$ C-NMR of 3ba:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 b b}$:

${ }^{13}$ C-NMR of 3bb:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3 bc :

${ }^{13} \mathrm{C}-$ NMR of 3 bc :

${ }^{1} \mathrm{H}$-NMR of 3 ca :

${ }^{13}$ C-NMR of 3ca:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 c b}$:

${ }^{13}$ C-NMR of 3cb:

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 c c}$:

${ }^{13}$ C-NMR of 3 cc :

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3da:

${ }^{13}$ C-NMR of 3da:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3 db :

[^0]

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3 dc :

${ }^{13}$ C-NMR of 3 dc :

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3ea:

${ }^{13}$ C-NMR of 3ea:

${ }^{1} \mathrm{H}$-NMR of 3 fa :

${ }^{13}$ C-NMR of 3fa:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 f b}$:

${ }^{13}$ C-NMR of 3 fb :

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3 ga :

${ }^{13}$ C-NMR of 3ga:

${ }^{1} \mathrm{H}$-NMR of 4aa:

${ }^{13}$ C-NMR of 4aa:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4ba:

${ }^{13}$ C-NMR of 4 ba :

${ }^{1} \mathrm{H}-$ NMR of 4 ca :

${ }^{13} \mathrm{C}$-NMR of 4ca:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4da:

${ }^{13}$ C-NMR of 4da:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4ea:

${ }^{13}$ C-NMR of 4ea:

${ }^{1} \mathrm{H}-$ NMR of 4 fa :

${ }^{13}$ C-NMR of 4fa:

${ }^{1} \mathrm{H}-$ NMR of 4ga:

${ }^{13}$ C-NMR of 4ga:

${ }^{1}$ H-NMR of 4ha:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4ia:

${ }^{1} \mathrm{H}-$ NMR of 4 ja :

${ }^{13} \mathrm{C}$-NMR of 4ja:

\%
-55.10

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4 ka :

${ }^{13}$ C-NMR of 4ka:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4la:

${ }^{13}$ C-NMR of 4la:

${ }^{1} \mathrm{H}-$ NMR of 4 ma :

${ }^{13}$ C-NMR of 4ma:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4na:

${ }^{13}$ C-NMR of 4na:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4oa:

${ }^{13}$ C-NMR of 4oa:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4 pa :

${ }^{13}$ C-NMR of 4pa:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $4 q \mathrm{a}$:

${ }^{13}$ C-NMR of 4qa:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 5 :

${ }^{13}$ C-NMR of 5:

M.

[^1]${ }^{1} \mathrm{H}-$ NMR of 6 :

${ }^{13}$ C-NMR of 6:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 7 :

${ }^{13}$ C-NMR of 7:

${ }^{1} \mathrm{H}$-NMR of 8:

${ }^{13}$ C-NMR of 8:

A

X-ray Crystallographic Data of compounds 3aa.

Figure caption: The molecular structure of 3aa (in-house code \# KA279) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. CCDC 1831087 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

Table 1 Crystal data and structure refinement for KA279MF.

Identification code	$\mathrm{KA} 279 \mathrm{MF}, \mathrm{CCDC} 1831087$
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	270.28
Temperature/K	$293(2)$
Crystal system	triclinic
Space group	$p \overline{1}$
a/Å	$6.063(4)$
b/Å	$9.023(7)$
c/Å	$11.915(8)$
$\alpha /{ }^{\circ}$	$96.04(3)$
$\beta /{ }^{\circ}$	$90.884(19)$
$\gamma /{ }^{\circ}$	$90.83(2)$
Volume/Å ${ }^{3}$	$648.1(8)$
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.385
μ / mm^{-1}	0.098
$\mathrm{~F}(000)$	284.0
Crystal size $/ \mathrm{mm}^{3}$	$0.380 \times 0.210 \times 0.120$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection/ ${ }^{\circ} 4.54$ to 51.988
Index ranges

$$
-7 \leq h \leq 7,-11 \leq k \leq 11,-14 \leq \mathrm{l} \leq 14
$$

Reflections collected	8651
Independent reflections	$2526\left[R_{\text {int }}=0.0397, R_{\text {sigma }}=0.0403\right]$
Data/restraints/parameters	$2526 / 0 / 188$
Goodness-of-fit on F^{2}	1.019
Final R indexes [l>=2 (I)]	$\mathrm{R}_{1}=0.0406, \mathrm{wR}_{2}=0.1299$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0524, \mathrm{wR}_{2}=0.1521$
Largest diff. peak/hole $/$ e \AA^{-3}	$0.24 /-0.17$

Data collection and structure solution of 3aa (KA279): Single crystal X-ray data for two compounds were collected at room temperature on a Bruker D8 QUEST equipped with a four circle kappa diffractometer and Photon 100 detector. An I $\mu \mathrm{s}$ microfocus Mo source ($\lambda=0.71073 A ̊$) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Unit cell dimensions were determined using 5997 reflections for KA279. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{1}$ The structures were solved by Direct Methods using SHELXS97 ${ }^{2}$ and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7. . $^{2-3}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms with C-H distances of $0.93--0.97 \AA$, and with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})$ or $1.5 \mathrm{U}_{\text {eq }}$ for methyl atoms.

References:

1. SMART \& SAINT. Software Reference manuals. Versions 6.28a \& 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
2. Sheldrick, G. M. SHELXS97 and SHELXL Version 2014/7, http://shelx.uni-ac.gwdg.de/SHELX/index.php.
3. Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, 57-91.

[^0]: ${ }^{13} \mathrm{C}$-NMR of 3 db :

[^1]: $\begin{array}{lll}175 & 170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & 0\end{array}$

