SUPPORTING INFORMATION

Different Agglomeration Properties of PC₆₁BM and PC₇₁BM in Photovoltaic Inks – A Spin-Echo SANS Study

Gabriel Bernardo^{1,*}, Manuel Melle-Franco², Adam Washington³, Robert Dalgliesh³, Fankang Li⁴, Adélio Mendes¹, Steven R. Parnell^{5,*}

¹LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and

Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

²CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

³ISIS Pulsed Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0QX, UK

⁴Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

⁵Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands

*Corresponding authors: gbernardo@fe.up.pt; S.R.Parnell@tudelft.nl

DAB model applied to SESANS

The structural length scale probed (z) is a function of neutron wavelength (λ), magnetic field strength (*B*) and the inclination angle of the magnets (θ).

$$z = cBL\lambda^2 \cot \theta \tag{1}$$

where c is a constant, L is the separation between the magnets. Hence using a pulsed source with multiple wavelengths allows us to collect and probe a wide range of length scales simultaneously due to the λ^2 dependence. This also allows us to measure quickly and opens up the possibilities of kinetics studies. In SESANS the measured polarisation is given by;

$$P(z)=P_s/P_0=\exp[\Sigma_t(G(z)-1)]$$
(2)

Where P_s and P_0 are the sample and empty polarisations respectively. The measured correlation function (G(z)) is a projection of the autocorrelation function $\gamma(r)$ of the density distribution of the sample along the encoding direction of SESANS. Σ_t is the fraction of neutrons that are scattered once and is given by;

$$\Sigma_t = \xi(\Delta \rho)^2 \phi(1 - \phi) \lambda^2 t \tag{3}$$

,where t is the sample thickness, $\Delta \rho$ is the difference in scattering length densities between the two phases as given in Table 1 (Supplementary Information) and ξ is given by;

$$\xi = 2 \int_{0}^{\infty} \gamma(r) dr \tag{4}$$

In this case of the DAB model, $\gamma(r)$ is given by;

$$\gamma(r) = \exp(-r/a) \tag{5}$$

,where *a* is the average correlation length of a system with random distributed holes and solid and hence $\xi=2 a$ for DAB model. G(z) can be obtained from the Abel transform of the autocorrelation function (γ (r)), which is given by;

$$G(z) = \left(\frac{z}{a}\right) K_1\left(\frac{z}{a}\right) \tag{6}$$

, where $\frac{K_1[\frac{z}{a}]}{a}$ is the first order of the modified Bessel function of the second kind.

Hence in the DAB model there are only two parameters needed to describe the fit: a length scale (a) and the saturation value Σ_t . For a known scattering length density difference, equation (3) can be solved and the roots of this solution yield the two volume fractions of the solvent and aggregate fractions given by;

$$\phi_{agg} = \frac{1 + \sqrt{1 - 4\left(\frac{\Sigma_t}{2a(\Delta\rho)^2 \lambda^2 t}\right)}}{2}$$
(7)

and the solvent volume fraction $\phi_{sol}=1-\phi_{agg}$ for a binary system. In order to convert this to solubility we use the following simple equation:

Solubility =
$$C_{solution} - (\phi_{agg} d_{PCBM})$$
 (8)

, where $C_{solution}$ is the total concentration of PC₆₁BM in solution (30, 60 or 90 mg.mL⁻¹), and d_{PC61BM} is the density of PC₆₁BM which we consider as 1500 mg.mL⁻¹.

	Density g∙cm ⁻³	SLD (Å-2)
PC ₆₁ BM	1.5ª	4.34x10 ⁻⁶
PC ₇₁ BM	1.5ª	4.42x10 ⁻⁶
Chloroform	1.49	2.36x10 ⁻⁶
Toluene	0.87	0.94x10 ⁻⁶
Chlorobenzene	1.11	1.82x10 ⁻⁶
DIO	1.84	0.12x10 ⁻⁶

Table S1. Densities and neutron scattering length densities of the fullerenes and solvents used in this study. ^a[Kiel, J. W., Eberle, A. P. R. & Mackay, M. E. Nanoparticle Agglomeration in Polymer-Based Solar Cells. Physical Review Letters 105, 168701 (2010)]

Figure S1. Rotation apparatus, with cell holders made of Teflon, placed in the beamline

	PC ₆₁ BM	PC ₇₁ BM
	30 mg∙mL ⁻¹	90 mg·mL ⁻¹
Chloroform	1B	CELWITE 650
	60 mg∙mL ⁻¹	90 mg∙mL ⁻¹
Toluene	20	19 Description
	90 mg·mL⁻¹	90 mg∙mL ⁻¹
Chlorobenzene	9. 2	8
	90 mg⋅mL ⁻¹	90 mg⋅mL ⁻¹
DIO	LANDELANDER	CELEMENTARIA CELEMETHARIA

Figure S2. Photos of solutions after ~48 h at rest. We note that, due to the high fullerene concentrations ($\geq 30 \text{ mg} \cdot \text{mL}^{-1}$) and cell path lengths (1 mm) used, at the time of the SESANS measurements all the solutions were completely opaque (and macroscopically homogeneous). After ~48 hours at rest (photos shown), all the PC₇₁BM solutions remained completely opaque and macroscopically homogeneous (including those with 90 mg \cdot mL⁻¹) but most of the PC₆₁BM solutions had suffered large phase segregation.

Figure S3. SANS results of (top to bottom): $PC_{61}BM$ in DIO (90 mg·mL⁻¹); $PC_{61}BM$ in Chlorobenzene (90 mg·mL⁻¹); $PC_{71}BM$ in Toluene (90 mg·mL⁻¹) and $PC_{61}BM$ in Chlorobenzene (30 mg·mL⁻¹).