Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information

In situ polymerization of graphene-polyaniline@ polyimide nanocomposite films with high EMI shielding and electrical properties

Kui Cheng,† Haoliang Li,†* Mohan Zhu, Hanxun Qiu and Junhe Yang*

School of Material Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Kui Cheng, Haoliang Li, contributed equally to this work

Corresponding authors: lihl1989@outlook.com jhyang@usst.edu.cn

Fig. S1 (a) The large size 40%Gr-PANI_{10:1}@PI film (the scale bar is 10 cm); (b) Gr-PANI_{10:1} in NMP and Gr in NMP.

Fig. S2. SEM image of Gr-PANI_{10:1} and the EDS mapping of Gr-PANI_{10:1}.

Table S1 Element content of GI-FAN(1 _{0:1} composites.				
Element (Gr-PANI _{10:1})	At%			
СК	77.15			
NK	22.19			
ОК	00.66			

Table S1Element content of Gr-PANI10:1 composites.

Fig. S3 The SEM images of (a, b,c,d) surface morphology of PANI, Gr-PANI_{5:1},Gr-PANI_{10:1}@PI and PI; The cross-section images (e, f) of Gr@PI and Gr-PANI_{10:1}@PI; The inset shows the magnification of the selected area and the scale bar is 0.1 um.

Fig. S4 (a) FTIR spectra of $Gr-PANI_{5:1}$ and $Gr-PANI_{15:1}$ composites; (b) Raman spectra of $Gr-PANI_{5:1}$ and $Gr-PANI_{15:1}$ composites.

Fig. S5 TGA curves of pure PANI, Gr and Gr-PANI_{10:1} composites.

Fig. S5 shows TGA curves of pure PANI, Gr and Gr-PANI_{10:1} composites. The 15 wt% weight loss temperatures of the PANI, Gr and Gr-PANI_{10:1} are 328.5 °C, 383.1 °C, and 717.5 °C, respectively. Meanwhile, the residual weight at 700 °C for the Gr-PANI_{10:1} is remarkably enhanced from 79.3% (pure Gr) to 86.8%, indicating that the Gr-PANI_{10:1} shows superior thermal stability. The TGA curve of Gr-PANI_{10:1} is the superposition of Gr and PANI. The weight ratio of PANI in Gr-PANI_{10:1} is calculated by the following equation (1): $\Delta W2 - \Delta W1$

wt%(PANI)= 1-
$$\Delta W^2 - \Delta W^3 \times 100\%$$
 (1)

where the ΔW_1 , ΔW_2 and ΔW_3 represent the weight loss of Gr-PANI_{10:1}, PANI and Gr from 40 to 800 °C. According to the TGA data, the PANI content in Gr-PANI_{10:1} is 12.5 wt%, which is close to the theoretical value.

Fig. S6 Electrical conductivity of (a) Gr-PANI and 40%Gr-PANI@PI with different mass ratios of Gr to PANI; (b) Gr@PI and Gr-PANI_{10:1}@PI with different filler contents.

Fig. S7 The mechanical properties of Gr@PI and Gr-PANI_{10:1}@PI with different filler contents (a) the tensile strength; (b)the elongation at break.

Fig. S8 Typical stress–strain curves of pure Gr@PI and Gr-PANI_{10:1}@PI films with different filler contents.

Fig. S9 Experiment setup for EMI shielding measurement: vector network analyzer.

Table S2 EMI shielding performance of various carbon-based polymer composite films						
Materials	Content	Thickness	$EMI SE_T$	EMI SSE value	Ref	
	(wt%)	(mm)	(dB)	$(dB \cdot cm^2 g^{-1})$		
					1	
PS/graphene	30.0	2.50	~17.3	~256.3	1	
PEI/graphene foam	10.0	2.30	~11.0	~164.9	2	
PU/MWCNT	22.0	0.10	~20.0	/	3	
WPU/CNT	76.2	0.32	~49.0	~3408.0	4	
PVDF/graphene	15.0	0.10	/	~1265.0	5	
Phenolic/rGO	70.0	0.30	~43.4	/	6	
PI/graphene	8.0	0.50	13.7–14.9	~693.0	7	
PI/graphene foam	16.0	0.80	17.0-21.0	~`75.0	8	
PE/graphene	15.0	1.00	~33.0	/	9	
Cellulose/CNT	40.0	0.15	~35.0	~1372.4	10	
WPU/CNT	76.2	2.30	~35.0	~2143.0	11	
Gr-PANI _{10:1} @PI	40.0	0.04	~21.3	~4096.2	This	
					work	

References

- 1 D. X. Yan, P. G. Ren, H. Pang, Q. Fu, M. B. Yang and Z. M. Li, J. Mater. Chem., 2012, 22, 18772-18774.
- 2 J. Ling, W. Zhai, W. Feng, B. Shen and G. Z. Wen, ACS Appl. Mater. Interfaces., 2013, 5, 2677-2684.
- 3 A. S. Hoang, Adv. Nat. Sci-Nano., 2011, 2, 5766–5771.
- 4 Z. Zeng, M. Chen, J. Hao, W. Li, X. Xiao, L. Zhou, Y. Pei, Z. Hui and Z. Zhong, Carbon., 2016, 96, 768-777.
- 5 H. B. Zhang, Q. Yan, W. G. Zheng, Z. He and Z. Z. Yu, ACS Appl. Mater. Interfaces., 2011, **3**, 918-924.
- 6 A. P. Singh, P. Garg, F. Alam, K. Singh, R. B. Mathur, R. P. Tandon, A. Chandra and S. K. Dhawan, *Carbon.*, 2012, **50**, 3868-3875.
- 7 H. Yang, Z. Li, H. Zou and P. Liu, *Polym. Adv. Technol.*, 2016, **28**(2), 233-242.
- 8 Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, RSC Adv., 2015, 5(31), 24342-24351.
- 9 M. H. Al-Saleh, J. Phys. D-Appl. Phys., 2016, 49(19), 195302.
- 10 L.-Q. Zhang, B. Yang, J. Teng, J. Lei, D.-X. Yan, G.-J. Zhong and Z.-M. Li, *J. Mater. Chem. C.*, 2017, **5**, 3130-3138.
- 11 Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou and Z. Zhang, Adv. Funct. Mater., 2016, 26, 303-310.