The synergetic effect of structure-engineered mesoporous SiO₂-ZnO composite for doxycycline adsorption

Danya Huang, Ying Zhang, Jingjing Zhang, Hongli Wang, Minggang Wang, Chen Wu, Daowen Cheng, Yue Chi*, Zhankui Zhao*

Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, Changchun University of Technology, Changchun 130012, China

* Corresponding author. Tel.: +86 431 85716644; Fax: +86 431 85716644. E-mail addresses: yuechi@ccut.edu.cn (Y. Chi), zhaozk@ccut.edu.cn (Z. Zhao).

1. Preparation of mesoporous SiO₂

6 g CTAB and 0.18 g TEA dissolved in 60 g H₂O at 60 °C for 1 h and simultaneously stirred at 150 rpm using a heater/magnetic stirrer. After that, a mixed solution of 16 mL of cyclohexane and 4.2 g of TEOS was added to the above solution and stirred at 60 °C for 15 h. The resulting solution was transferred into a Teflon-lined stainless-steel autoclave, which was sealed and heated at 100 °C for 10 h and naturally cooled to room temperature. The white particles were collected and washed with ethanol and deionized water, and dried under vacuum at 60 °C for 8 h. Finally, to remove PVP and obtain the adsorbent mesoporous SiO₂, the as-prepared powder was calcined at 550 °C for 6 h with a heating rate of 5 °C min⁻¹.

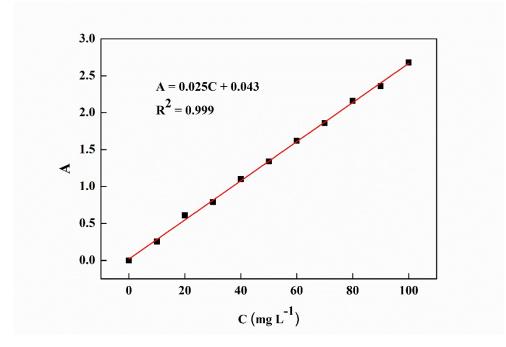


Fig. S1 Standard curve of DOX.

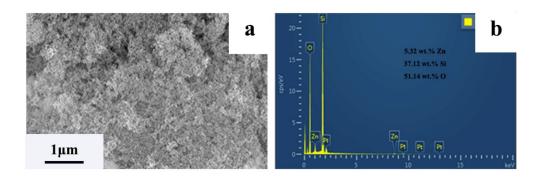


Fig. S2 SEM image (a) and EDS spectra (b) of mesoporous SiO_2 -ZnO.

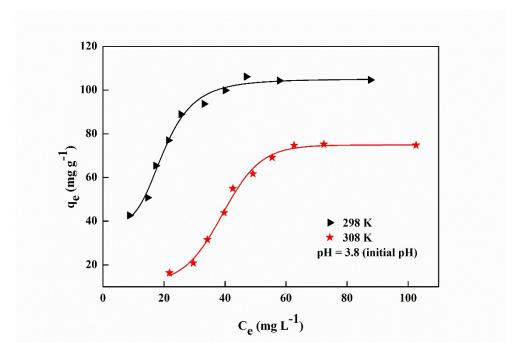


Fig. S3 DOX sorption isotherms with mesoporous SiO₂-ZnO at two different

temperatures.

 $(m_{sorbent} = 10 \text{ mg}, \text{ V} = 20 \text{ mL}, C_{0(DOX)} = 10\text{-}100 \text{ mg } \text{L}^{-1}, t = 24 \text{ h})$

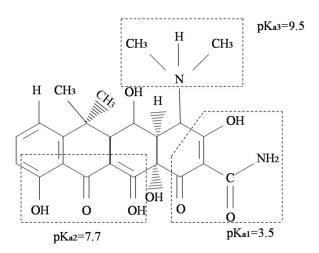


Fig. S4 Molecular structure and physicochemical properties of DOX.

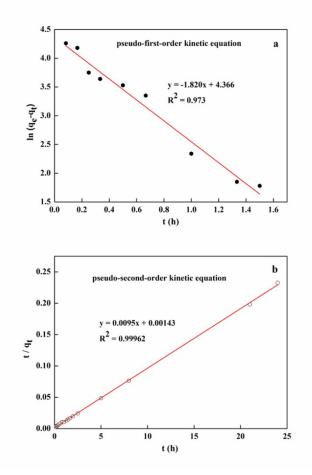


Fig. S5 Fitting results of pseudo-first-order (a) and pseudo-second-order (b) models

for DOX sorption on mesoporous SiO_2 -ZnO.

 $(m_{sorbent} = 100 \text{ mg}, V_{(DOX)} = 200 \text{ mL}, C_{0(DOX)} = 100 \text{ mg L}^{-1}, T = 298 \text{ K}, initial pH)$

Adsorbents	Adsorption conditions	Qe (mg g ⁻¹)	References
GO-MP 298K	initial pH	35.3	[53]
MIP-HCM	298K,	58.2	[54]
SBC@β-FeOOH	298K, pH=2	15.1	[55]
RH700	318K, pH=6	85.2	[56]

Table S1 Capacities of doxycycline hydrochloride onto various adsorbents.

The Langmuir, Freundlich, Temkin and D-R isotherm equations are shown

below:

Langmuir models:

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \tag{1}$$

Freundlich models:

$$q_e = K_F C_e^{-1/n} \tag{2}$$

Temkin model:

$$q_e = B \ln A_T + B \ln C_e \tag{3}$$

Dubinin-Radushkevich models:

$$\ln q_e = \ln q_m - \beta \varepsilon^2 \tag{4}$$

$$\varepsilon = RT \ln \left(1 + \frac{1}{C_e}\right) \tag{5}$$

$$E = (2\beta)^{-1/2}$$
(6)

Where q_m (mg g⁻¹) is the maximum adsorption capacity, n is a dimensionless number related to surface heterogeneity, K_F (mg¹⁻ⁿ Lⁿ g⁻¹) is Freundlich affinity coefficient and K_L (L mg⁻¹) is the Langmuir fitting parameter, β is a constant related to sorption energy; ϵ is Polanyi sorption potential, related to the sorption energy E required to move one molecule of solute from infinity to the surface of adsorbents. R is the ideals gas constant (8.314 J mol⁻¹ K⁻¹) and T is the temperature (K).

Model evaluation parameters

Coefficient of determination: R² (COD)

Degree-of-freedom adjusted coefficient of determination: Adj. R²

Sum of squared residuals:

$$SSE = \sum_{i=1}^{n} (y_{experiment} - y_{fitting})^2$$
(7)

Root mean squared error:

$$Root - MSE = \sqrt{\frac{SSE}{n}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{experiment} - y_{fitting})^2}$$
(8)

The pseudo-first-order kinetic, pseudo-second-order kinetic, intra-particle

diffusion and liquid-film diffusion equations are shown below:

The pseudo-first-order kinetic model:

$$ln(q_e - q_t) = lnq_e - k_1 t \tag{9}$$

The pseudo-second-order kinetic model:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(10)

The intra-particle diffusion model:

$$q_e = k_d t^{\frac{1}{2}} + C \tag{11}$$

The liquid-film diffusion model:

$$\ln\left(1 - \frac{q_t}{q_e}\right) = -k_f t + A \tag{12}$$

Where t is the adsorption time (h), q_e and q_t (mg g⁻¹) are the absorption capacity at equilibrium and time t. k_1 (h⁻¹), k_2 (g mg⁻¹ h⁻¹), k_d (g mg⁻¹ h^{-0.5}) and k_f (h⁻¹) are adsorption rate constant of the pseudo-first-order kinetic, pseudo-second-order kinetic, intraparticle diffusion and liquid-film diffusion models, respectively. C is the thickness of boundary layer and A is liquid-film diffusion constant.