## **Support Information**

## Quasiparticle Effects on the Linear and Nonlinear Susceptibility of ZnGeP<sub>2</sub>

Hua Xie,<sup>a</sup> Shenghao Fang,<sup>b</sup> He Zhao,<sup>a</sup> Xiaoliang Xu<sup>a\*</sup>, Ning Ye,<sup>b\*</sup> and

## Wei Zhuang<sup>c\*</sup>

a Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, P.R. China. Tel: +86-551-63607574

b Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

\* To whom correspondence should be addressed. E-mail: wzhuang@fjirsm.ac.cn; nye@fjirsm.ac.cn; xlxu@ustc.edu.cn



**Fig. S1** Band structure in the Brillouin zone corresponding to the primitive unit cell of the body centered tetragonal phase  $ZnGeP\mathbb{Z}_2$  calculated with the (a) PBE, (b) PBEsol, (c) SCAN meta-GGA, (d) mBJ, (e) HSE06, (f) GW0. The zero of energy corresponds to the Fermi level.



Fig. S2 Transition diploe moment between a few valence bands and conduction bands in  $ZnGeP_2$ . The highest occupancy valence band is 36.

| Peak | Initial band | Final band | P <sup>2</sup> (Debye <sup>2</sup> ) |
|------|--------------|------------|--------------------------------------|
| А    | 36           | 38         | 539.916                              |
| В    | 36           | 37         | 413.215                              |
| C1   | 35           | 37         | 178.736                              |
| C2   | 36           | 37         | 341.737                              |
| D1   | 36           | 39         | 21.047                               |
|      | 36           | 40         | 32.971                               |
|      | 35           | 39         | 34.427                               |
|      | 35           | 40         | 21.417                               |
| D2   | 36           | 40         | 28.639                               |
|      | 35           | 40         | 51.031                               |
|      | 34           | 40         | 40.602                               |
|      | 33           | 40         | 28.078                               |
|      | 36           | 39         | 38.059                               |
|      | 35           | 39         | 28.713                               |
|      | 34           | 39         | 27.693                               |
|      | 33           | 39         | 43.113                               |
| D3   | 31           | 37         | 0.549                                |
|      | 31           | 38         | 11.629                               |
|      | 32           | 37         | 176.4                                |
|      | 32           | 38         | 5.511                                |
| E1   | 36           | 39         | 0.134                                |
|      | 36           | 40         | 12.953                               |
|      | 35           | 39         | 4.532                                |
|      | 35           | 40         | 0.126                                |
| E2   | 33           | 41         | 16.115                               |
|      | 33           | 42         | 27.640                               |
|      | 34           | 41         | 26.312                               |
|      | 34           | 42         | 16.385                               |

**Table S1** The transition dipole moment for the peaks in the imaginary part of dielectric function.



**Fig. S3** Real part  $\varepsilon_1(\omega)$  (top) and imaginary part  $\varepsilon_2(\omega)$  (bottom) of the linear dielectric function of  $ZnGeP_2$ . The dielectric functions for the electric field polarization along the z-direction (E||c-axis) (right) and x-direction (E||a-axis) (left) are calculated with different methods and determined with experimentally (red line). Only direct interband optical transitions are considered in the calculation. The experimental data in the energy range 1.5-6.0 eV are taken from<sup>1</sup>.



**Fig. S4** The calculated  $\varepsilon ||a|$  (ordinary) and  $\varepsilon ||c|$  (extraordinary) optical absorption coefficients along the z-axis of ZnGeP<sub>2</sub> unit-cell as a function of phonon energy using the PBE, mBJ,  $^{GW_0}$  and BSE.

1. V. Blickle, K. Flock, N. Dietz and D. E. Aspnes, *Appl. Phys. Lett.*, 2002, **81**, 628-630.