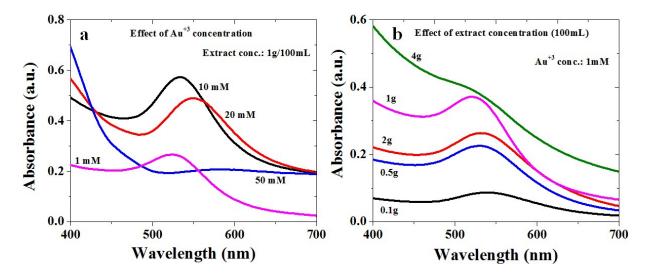
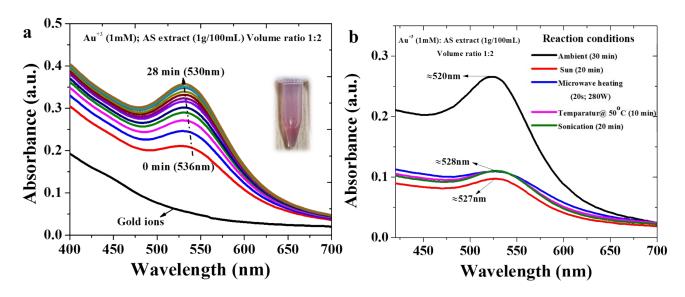
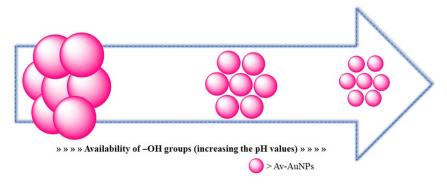
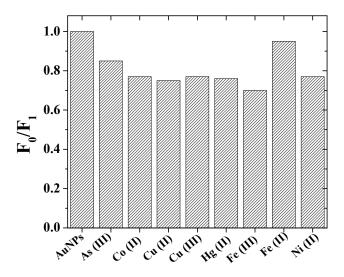
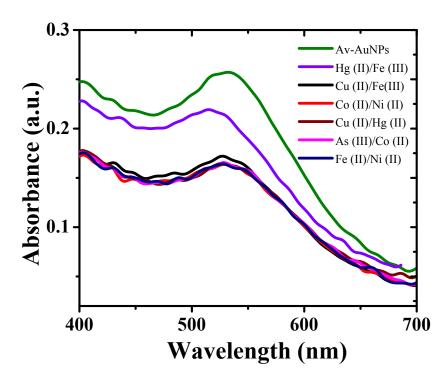
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Persea Americana Seed Extract Mediated Gold Nanoparticles for Mercury (II)/ Iron (III) sensing, 4-nitrophenol reduction, and organic dye degradation

Naveen Kumar Reddy Bogireddy*a and Vivechana Agarwal*a


Fig. S1 UV-visible absorbance spectra of the colloidal Av-AuNPs by controlling the concentrations of (a) Au^{+3} ion (i.e., as-prepared avocado seed extract is maintained constant 2mL) and (b) seed extract is varied from 0.1 to 4g/100 mL (i.e., Au^{+3} ion concentration maintained as 1mM).


Figure S2 (a) Real time monitoring of Av-AuNPs synthesis (1mM Au^{+3} salt reduced with 1g/100mL of AS extract with 1:2 volume ratio) in UV-vis absorbance spectroscopy and (b) effect of controlling the external conditions in the formation of Av-AuNPs.

 $\label{eq:Figure S3} \begin{tabular}{ll} Figure S3 The possible effect of avocado seed extract-controlled pH values on the size control of the $$AuNPs.$ \end{tabular}$

Figure S4 Normalized absorbance intensities of different heavy metal ions (i.e., F1, F0 represent the absorbance intensity before and after the incorporation of the metal ions in Av-AuNPs).

Figure S5. Absorbance spectra corresponding to the sensing of Hg (II)/Fe (III) as compared with other metal ion combinations using Av-AuNPs.