Supporting information for

Carbon-based Artificial SEI Layers for Aqueous Lithium-ion Battery Anodes

Usha Subramanya¹[‡], Charleston Chua¹[‡], Victor Gin He Leong¹, Ryan Robinson¹, Gwenlyn Angel Cruz Cabiltes¹, Prakirti Singh¹, Bonnie Yip¹, Anuja Bokare², Folarin Erogbogbo², and Dahyun Oh¹*

AUTHOR ADDRESS

¹Chemical and Materials Engineering Department, Charles W. Davidson College of Engineering, San José State University, One Washington Square, San José, CA 95192-0080

²Biomedical Engineering Department, Charles W. Davidson College of Engineering, San José State University, One Washington Square, San José, CA 95192-0080

Figure S1. TGA of C-TiO₂ with different ratios of precursors (annealed at 600 °C) with a heating rate of 10 °C min⁻¹ under air.

Figure S2. Raman spectra of commercially obtained anatase TiO_2 nanoparticles, sol–gel TiO_2 nanoparticles, and C-TiO₂ (synthesized with a precursor ratio of 1:4 and annealed at 600 °C). The peak shifts and relative intensities of C-TiO₂ are very similar to that of the anatase phase.

Figure S3. The full cell performance of C-TiO₂ anodes with different annealing temperature of carbon layer. The precursor ratio for TiO₂ synthesis was fixed as 1:4 (TiO₂:glucose). (A) Voltage profiles of aqueous batteries at the 1st and 40th cycle tested with C-TiO₂ anodes annealed at 800 °C and 900 °C. (B) Cycling performance and (C) corresponding Coulombic efficiency of C-TiO₂ anodes annealed at 800 °C and 900 °C.

Figure S4. Nyquist plots from the symmetric cathode and uncoated anode cells cycled after 100 cycles. The overall impedance of the cathode is small compared to the anode, showing that the majority of the cell impedance evolution originates from the anode.

Figure S5. SEM images of anodes made of (A) sol–gel TiO₂ at the pristine state, (B) sol–gel TiO₂ cycled 100 times, and (C) C-TiO₂ (synthesized with 1:4 of precursor ratio and annealed at 600 °C) cycled 100 times. (D) XRD patterns of sol–gel TiO₂ and C-TiO₂ electrodes at their pristine states, and sol–gel TiO₂ and C-TiO₂ electrodes after cycling 60 times. (E) Lattice parameters of XRD patterns in (D).

Figure S6. The cycling performance (A) and the first discharge voltage profile (B) of C-TiO₂ anodes (synthesized with 1:4 of precursor ratio and annealed at 600 °C) tested at different C rates.