Supporting Information

Multilayer carbon materials prepared from zanthoxylum

schinifolium husk for High-Performance Supercapacitor

Haiyan Yin^a, Hong Zheng^{*a,b}, Liu Yang^a, Shuya Wang^c, LianLiu^a

 ^{a.} Department of Chemistry, Chongqing Normal University, Chongqing, 401331, China
^{b.} Engineering Research Center for Biotechnology of Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, 401331, China
^{c.} Qinghai Institute of Salt Lakes, Chinese of Academy of Sciences, Xining, 810008, China

Fig. S1. The picture of zanthoxylum schinifolium husk: (A) Washed and dried . (B) Carbonizated. (C) Activated.

Fig. S2. (A, B) SEM images and (a, b) TEM images of NC; (C, D) SEM images and (c, d) TEM images of NC-2; (E, F) SEM images and (e, f) TEM images of NC-4

Fig. S3. Electrochemical properties of NC and NC-x (2, 4): (A) CV curves of NC range from $5 \text{ to } 100 \text{ mVs}^{-1}$, (B) GCD curves of NC range from 0.5 to 10 A g⁻¹, (C) and (E) CV curves of NC-x (x=2,4) range from $5 \text{ to } 100 \text{ mVs}^{-1}$, (D) and (F) GCD curves of NC-x (x=2,4) range from 0.5 to 10 A g⁻¹.

Fig. S4. Cyclic stability of NC and NC-x (2, 3, 4) at a charge–discharge current density of 0.5 A g⁻¹ for 5000 cycles.

SampleSBET(m² g⁻¹)C (%)ID/IGLayer spacing (nm)Yield (%)NC277.469879.60.69603.76991.6NC-2740.740790.30.89853.92796.7NC-31473.666397.90.87923.93594.3NC-4864.758093.70.98233.94492.1	and NC-X (2, 5, 4).							
NC277.469879.60.69603.76991.6NC-2740.740790.30.89853.92796.7NC-31473.666397.90.87923.93594.3NC-4864.758093.70.98233.94492.1	Sample	$S_{BET}(m^2 g^{-1})$	C (%)	ID/IG	Layer spacing (nm)	Yield (%)	_	
NC-2740.740790.30.89853.92796.7NC-31473.666397.90.87923.93594.3NC-4864.758093.70.98233.94492.1	NC	277.4698	79.6	0.6960	3.769	91.6		
NC-31473.666397.90.87923.93594.3NC-4864.758093.70.98233.94492.1	NC-2	740.7407	90.3	0.8985	3.927	96.7		
NC-4 864.7580 93.7 0.9823 3.944 92.1	NC-3	1473.6663	97.9	0.8792	3.935	94.3		
	NC-4	864.7580	93.7	0.9823	3.944	92.1	_	

Table 2 The BET surface area, coulombic efficiency, ID/IG, layer spacing, yield of NC and NC-x (2, 3, 4).

 $^{\rm a}$ The $S_{\rm BET}$ was determined by using multi-point BET method.

^b Layer spacing of (002) crystal plane.

^e Yield is before and after carbonization of NC, yield is before and after activation of NC-2, NC-3, and NC-4.