Three-dimensional reduced graphene oxide aerogel stabilizes molybdenum trioxide with enhanced photocatalytic activity for dye degradation

Ting Wu^{1,†}, Bo Zhang^{2,†,*}, Zhimin Wu^{3,*}, Jinglin Zhang¹, Huidi Liu⁵, Shaobin Yu⁴, Zhihao Huang¹ and Xiang Cai^{1,*}

[†]T. Wu and B. Zhang contributed equally to this article.

¹ Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China

² School of Metallurgical and Material Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China

³ Human Resource Office, Guangdong Polytechnic, Foshan 528041, P. R. China

⁴ The No.1 Surgery Department of No.5 People's Hospital of Foshan, Foshan 528211,

P. R.China

⁵ Scientific Research Office, Guangdong Polytechnic, Foshan 528041, P. R. China

* Corresponding Authors:

E-mail addresses: 13747@hut.edu.cn (B. Zhang); carrybeyond@126.com (Z. Wu); cecaixiang@163.com (X. Cai)

Fig. S1 Nitrogen adsorption-desorption isotherms (measured at 77 k) of (a) rGO aerogel, (b) rGO-MoO₃ (3:1) aerogel, (c) rGO-MoO₃ (4:1) aerogel, (d) rGO-MoO₃ (5:1) aerogel, and (e) rGO-MoO₃ (6:1) aerogel.

Fig. S2 The possible pathway for the photoelectron excited and transfer in $rGO-MoO_3$ aerogel under visible light irradiation.