Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information (SI)

Oxidative Steam Reforming of Ethanol over $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca)

Catalysts: Effect of Alkaline Earth Metal Substitution and Support on Stability and

Activity[†]

Ho-Chen Hsieh,^{a, c} Ping-Wen Tsai,^a Yuan-Chia Chang,^a Sheng-Feng Weng,^a Hwo-Shuenn Sheu,^d Yu-Chun Chuang,^d and Chi-Shen Lee^{a,b}*

^aDepartment of Applied Chemistry, National Chiao-Tung University, 1001 University Rd., Hsinchu 30010, Taiwan

^bCenter for Emergent Functional Matter Science, National Chiao-Tung University, Hsinchu 30010, Taiwan.

^cGraduate Degree Program of Science and Technology of Accelerator Light Source, National Chiao-Tung University, Hsinchu 30010, Taiwan ^dNational Synchrotron Radiation Research Center, Hsinchu, 30010, Taiwan

* Corresponding author: Chi-Shen Lee

Fax: +886 3 5723764

E-mail addresses: chishen@mail.nctu.edu.tw

Figure S1. Rietveld Refinement of (A) LCRO, (B) MLCRO03, and (C) CLCRO02.

(A)

(B)

Figure S2. SEM image of solid solution (A) MLCRO (a) x=0.0, (b) x=0.2, (c) x=0.3 and (B) CLCRO (a) x=0.1 and (b) x=0.2.

photoelectron spectra of $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca) (A) Mg2p and (B) Ca2p and (C) MLCRO0-03 of Ru3d.

Figure S4. X-ray photoelectron spectra of $Ca_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (A) La3*d*; (B) Ce3*d*; (C) Ru3*d*, and (D) O1*s*.

Figure S5. The first derivatives of the Ru K-edge XANES spectrum for LCRO, MLCRO03, and CLCRO02 catalysts, and the reference compounds of Sr_2RuO_4 , Sr_2GdRuO_6 , and RuO_2 .

Figure S6. The Ru K-edge EXAFS spectra of MLCRO0-03.

Figure S7. The Ru K-edge EXAFS spectra of CLCRO01-02.

Figure S8. Temperature programmed reduction profile of (A) H₂ consumption per catalysts of $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca) and (B) H₂ consumption per Ru atom of $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca).

Figure S9. The activation temperature of catalysts for (A) LCRO/Al₂O₃, (B) MLCRO03/Al₂O₃, (C) CLCRO02/Al₂O₃ (H₂O/ethanol = 3 and GHSV = $1.6 \times 10^5 \text{ h}^{-1}$).

Figure S10 (A). Performance in OSRE of $Mg_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}/Al_2O_3$ with Ethanol conversion, CO, CO₂, CH₄, and C₂H₄ selectivity (H₂O/ethanol = 3, GHSV = 1.6 x 10⁵ h⁻¹, T = 350°C).

Figure S10 (B). Performance in OSRE of $Ca_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}/Al_2O_3$ with Ethanol conversion, CO, CO₂, CH₄, and C₂H₄ selectivity (H₂O/ethanol = 3, GHSV = 1.6 x 10⁵ h⁻¹, T = 280°C).

Figure S11. Stability test on catalyst MLCRO03/Al₂O₃ under T = 350°C, H₂O/ethanol = 3, GHSV = $1.6 \times 10^5 h^{-1}$ condition.

Figure S12. Powder X-ray diffraction of (A) LCRO/Al₂O₃, (B) MLCRO03/Al₂O₃, and (C) CLCRO02/Al₂O₃ before and after long-term stability test.

Figure S13. SEM for MLCRO03/Al₂O₃, T = 350°C, H₂O/ethanol = 3, GHSV = $1.6 \times 10^5 \text{ h}^{-1}$ condition (A) Fresh; (B) after 48 hours; (C) after 350 hours long-term stability test.

Figure S14. TGA and DSC profiles of ATR on LZO catalysts after long-term reaction.

Figure S15. Powder X-ray diffraction of (a) LCRO/LZO, (b) MLCRO03/LZO, and (C) CLCRO02/LZO before and after long-term stability test (OSR, H₂O/ethanol = 3, GHSV = $1.6 \times 10^5 h^{-1}$, T = 400°C).

Figure S16. Powder X-ray diffraction of (A) MLCRO03/LZO and (B) CLCRO02/LZO before and after long-term stability test (ATR, H_2O /ethanol = 3, GHSV = 1.6 x 10⁵ h⁻¹).

Figure S17. The Raman spectrum of fresh and long-termed used catalysts (A) CLCRO02/Al₂O₃, (B) LCRO/LZO, (C) CLCRO02/LZO.

(A) LCRO/LZO Fresh

Figure S18. SEM and EDX of (A) fresh and (B) used catalyst LCRO/LZO for long-term used in OSRE.

(A) MLCRO03/LZO Fresh

Figure S19. SEM and EDX of (A) fresh and (B) used catalyst MLCRO03/LZO for long-term used in OSRE.

(A) CLCRO02/LZO Fresh

Figure S20. SEM and EDX of (A) fresh and (B) used catalyst CLCRO02/LZO for long-term used in OSRE.

Figure S21. Temperature programmed reduction profile of (A) MLCRO03/LZO and (B) CLCRO02/LZO

Figure S22. Ethanol conversion on non-oxidative condition $(P(O_2) = 0, S/E=3, GHSV=16,000 h^{-1})$ with catalysts of (A) MLCRO03/Al₂O₃, (B) MLCRO03/LZO, (C)CLCRO02/Al₂O₃and(D)CLCRO02/LZO.

x	LCRO	MLCRO03	CLCRO02
R _{wp} (%)	5.96	6.94	9.78
R _p (%)	4.89	5.55	8.42
a (Å)	11.14(1)	11.11(2)	11.15(1)
<i>x</i> (O48f)	0.367(2)	0.392(2)	0.384(3)
B-O48f (Å)	2.36(1)	2.52(2)	2.47(2)
A-O8b (Å)	2.412(1)	2.407(3)	2.414(2)
A-O48f (Å)	2.46(1)	2.30(1)	2.36(2)
B-O48f-B (°)	113.0(12)	102.3(10)	105.7(13)
A-O48f-A (°)	111.1(5)	117.4(12)	113.4(14)
O48f-B-O48f (°)	107.6(7)	112.8(4)	111.3(6)
B-48f-A (°)	109.3(1)	109.0(1)	109.3(1)

Table S1. Powder diffraction of $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca) as obtained from Rietveld Refinement of synchrotron diffraction data.

(a)	LCRO
(4)	LCINO

Atom	Site	x	У	Z	Occupancy	100* <i>U</i> _{iso} (Ų)
La	16 <i>d</i>	0.5	0.5	0.5	0.9	2.53(2)
Ce	16 <i>c</i>	0.0	0.0	0.0	0.9	2.53(2)
Ru	16 <i>c</i>	0.0	0.0	0.0	0.1	2.53(2)
02	8b	0.375	0.375	0.375	1.01(2)	5.3(4)
03	48f	0.367(2)	0.125	0.125	1.01(2)	5.3(4)
(b) MLCRO	03					
Atom	Site	х	у	Z	Occupancy	100* <i>U</i> _{iso} (Ų)
La	16 <i>d</i>	0.5	0.5	0.5	0.9	2.19(3)
Mg	16 <i>d</i>	0.5	0.5	0.5	0.1	2.19(3)
Ce	16 <i>c</i>	0.0	0.0	0.0	0.9	2.19(3)
Ru	16 <i>c</i>	0.0	0.0	0.0	0.1	2.19(3)
02	8b	0.375	0.375	0.375	0.96(2)	5.5(6)
03	48f	0.392(2)	0.125	0.125	0.96(2)	5.5(6)
(c) CLCROO)2					
Atom	Site	х	у	Z	Occupancy	100* <i>U</i> _{iso} (Ų)
La	16 <i>d</i>	0.5	0.5	0.5	0.9	2.18(4)
Са	16 <i>d</i>	0.5	0.5	0.5	0.1	2.18(4)
Ce	16 <i>c</i>	0.0	0.0	0.0	0.9	2.18(4)
Ru	16 <i>c</i>	0.0	0.0	0.0	0.1	2.18(4)
02	8b	0.375	0.375	0.375	1.00(2)	4.6(5)
03	48f	0.384(3)	0.125	0.125	1.00(2)	4.6(5)

Table S2 Assignments of Ce3*d* XPS lines and calculations of Ce⁴⁺/Ce³⁺ of $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca)

Ce ⁴⁺ /Ce ³⁺ contribution		x = 0.0		x = 0.1		x = 0.2		x = 0.3	
	Peak	Position (eV)	Area	Position (eV)	Area	Position (eV)	Area	Position (eV)	Area
IV	v	882.0	8516	881.8	7822	881.9	8603	881.8	8176
ш	V '	885.0	2150	885.0	2139	884.9	2352	885.0	2368
IV	V''	888.2	6826	888.0	6941	888.0	6329	888.0	6149
IV	V'''	897.5	8393	897.4	7656	897.5	7241	897.5	7749
IV	U	900.5	5489	900.3	5377	900.5	5173	900.4	4694
ш	υ'	904.8	2406	904.6	1862	903.7	1845	903.9	1993
IV	U''	907.9	3286	907.3	3441	907.4	3124	907.2	3045
IV	U'''	915.8	6539	915.9	5758	915.9	5422	915.9	5785
	[Ce ³⁺]	10.4	15%	9.76	5%	10.4	7%	10.9	1%
	[Ce ⁴⁺]	89.5	55%	90.2 ⁴	4%	89.5	3%	89.0	9%

 $Mg_{x}La_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$

continue from the previous page

 $Ca_{x}La_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$

Carium		x = 0).1	x = 0.2		
contribution	Peak	Position (eV)	Area	Position (eV)	Area	
IV	v	881.9	8994	882.0	7898	
ш	V '	885.4	4167	885.0	2785	
IV	V''	888.5	5714	888.1	5862	
IV	V'''	897.6	7140	897.6	7128	
IV	U	900.4	5775	900.3	4862	
Ш	U'	903.4	2045	902.6	2162	
IV	U''	907.0	3564	906.6	4145	
IV	U'''	916.0	5898	916.1	6078	
	[Ce ³⁺]	14.35%		12.09%		
	[Ce ⁴⁺]	85.65%		87.91%		

	Ru3d3/2		C1s		Ru3d5/2	
Mg ²⁺		Area	$RE(\mathbf{a})$	Area	$PE(\alpha)/$	Area
dopant (x)	BE (ev)	(a.u.)	DE (EV)	(a.u.)	DE (EV)	(a.u.)
0.0	286.5	1316	2010	2015	282.4	856
0.0	287.8	384	204.0	2045	283.7	656
0.1	286.2	967	2010	2120	281.9	951
0.1	287.9	556	204.0	2129	283.3	480
0.2	286.3	1066	2010	2742	281.7	1247
0.2	288.1	689	204.0	5245	283.4	663
0.2	286.1	1250	201 0	2702	281.8	1052
0.3	287.4	833	204.8	5 2793	283.6	711

Table S3. Assignments of Ru3*d* XPS lines of $M_xLa_{2-x}Ce_{1.8}Ru_{0.2}O_{7-\delta}$ (M = Mg, Ca)

 $Mg_{x}La_{2\text{-}x}Ce_{1.8}Ru_{0.2}O_{7\text{-}\delta}$

 $Ca_{x}La_{2\text{-}x}Ce_{1.8}Ru_{0.2}O_{7\text{-}\delta}$

	Ru3d3/2		C1s		Ru3d5/2	
Ca ²⁺		Area		Area	PF(a)/	Area
dopant (x)	be (ev)	(a.u.)	BE (ev) (a.	(a.u.)	BE (ev)	(a.u.)
0.1	286.2	967	201 0	3139	281.9	951
	287.9	556	204.0		283.3	480
0.2	286.3	1066	201 0	2742	281.7	1247
	288.1	689	284.8	3243	283.4	663

Table S4. The first derivatives of the Ru K-edge XANES spectrum of LCRO, MLCRO03, and CLCRO02 catalysts with reference compounds RuO₂.

Sample	LCRO	MLCRO03	CLCRO02	RuO ₂
Deriv μ(E)/e.V	22129.73	22129.86	22129.73	22128.57

Catalyst	T (°C)	$C_2H_5OH/O_2/H_2O$	X _{EtOH} (%)	H ₂ yield (%)	Ref
Ir/CeO ₂	550	1/0.6/1.8	100	55 ^b	1
Ir/CeO ₂	650	1/0.6/1.8	100	65 ^b	2
Rh/CeO ₂ /Al ₂ O ₃	700 ^a (ATR)	1/1.17/3	100	68	3
Ru/Ce _{1-x} M _x O ₂	700° (ATR)	1/1.17/3	100	65	4
Rh/CeO ₂	800 ° (ATR)	1/1.17/3	100	69	5
Pt/CeZrO ₂	500	1/0.5/2	90	55 ^b	6
CeNiH _z O _y	280 ° (ATR)	1/1.6/3	100	45 ^b	7
NiAl ₂ O ₄ -FeAl ₂ O ₄	600	1/0.5/3	100	65	8
LaNiO ₃	500	1/0.5/3	60	60 ^b	9
Ni/La ₂ O ₃	500	1/0.5/3	100	55 ^b	9
Ni/CeO ₂	650	1/0.8/8.8	75	80 ^c	10
Ni/MgO	650	1/0.8/8.8	75	85 ^c	10
Co/CeO ₂	500	1/0.5/3	100	58 ^b	11
La _{0.9} Ce _{0.1} NiO ₃	500	1/0.5/3	100	50 ^b	12
La _{1-x} Ca _x Fe _{1-x} Co _x O ₃	650	1/0.5/0.33	100	68 ^b	13
$La_{0.6}Sr_{0.4}CoO_{3-\delta}$	600	1/0.5/3	100	70 ^b	14
La ₂ Ce _{1.55} Ni _{0.45} O ₇ /Al ₂ O ₃	500	1/1.17/3	100	53	15
5%Ru/CeO ₂ /Al ₂ O ₃	400	1/1.17/3	96	57	16
5%Ru/La ₂ Ce ₂ O ₇ /Al ₂ O ₃	400	1/1.17/3	97	56	16
$La_2Ce_{1.8}Ru_{0.2}O_7/Al_2O_3$	400	1/1.17/3	100	60	16
$Li_{0.6}La_{1.4}Ce_{1.8}Ru_{0.2}O_7/AI_2O_3$	350	1/1.17/3	100	62	17
Li _{0.6} La _{1.4} Ce _{1.8} Ru _{0.2} O ₇ /LZO	350	1/1.17/3	100	58	17
Li _{0.6} La _{1.4} Ce _{1.8} Ru _{0.2} O ₇ /Al ₂ O ₃	372* (ATR)	1/1.17/3	91	41	17
Li _{0.6} La _{1.4} Ce _{1.8} Ru _{0.2} O ₇ /LZO	380* (ATR)	1/1.17/3	90	43	17
$Mg_{0.3}La_{1.7}Ce_{1.8}Ru_{0.2}O_7/AI_2O_3$	350	1/1.17/3	100	61	d
$Ca_{0.2}La_{1.8}Ce_{1.8}Ru_{0.2}O_7/Al_2O_3$	280	1/1.17/3	90	55	d
La ₂ Ce _{1.8} Ru _{0.2} O ₇ /LZO	400	1/1.17/3	100	54	d
Mg _{0.3} La _{1.7} Ce _{1.8} Ru _{0.2} O ₇ /LZO	400	1/1.17/3	100	54	d
Ca _{0.2} La _{1.8} Ce _{1.8} Ru _{0.2} O ₇ /LZO	400	1/1.17/3	100	54	d
Mg _{0.3} La _{1.7} Ce _{1.8} Ru _{0.2} O ₇ /LZO	425* (ATR)	1/1.17/3	94	45	d
Ca _{0.2} La _{1.8} Ce _{1.8} Ru _{0.2} O ₇ /LZO	420* (ATR)	1/1.17/3	100	49	d

Table S5. Review of catalysts tested for hydrogen production from OSRE/SRE.

^a denote ATR experiments were monitored by a K-type thermocouple on the reaction tube; ^b mole% ; ^c Selectivity(%); ^d this study

Reference

- F. Wang, W. Cai, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos and W. Shen, Int. J. Hydrogen Energy, 2011, 36, 13566-13574.
- 2. W. Cai, F. Wang, E. Zhan, A. C. Van Veen, C. Mirodatos and W. Shen, *J. Catal.*, 2008, **257**, 96-107.
- 3. G. A. Deluga, J. R. Salge, L. D. Schmidt and X. E. Verykios, *Science*, 2004, **303**, 993-997.
- 4. W.-T. Chen, K.-B. Chen, M.-F. Wang, S.-F. Weng, C.-S. Lee and M. C. Lin, *Chem. Commun.*, 2010, **46**, 3286-3288.

- 5. W.-I. Hsiao, Y.-S. Lin, Y.-C. Chen and C.-S. Lee, *Chem. Phys. Lett.*, 2007, **441**, 294-299.
- S. M. de Lima, I. O. da Cruz, G. Jacobs, B. H. Davis, L. V. Mattos and F. B. Noronha, J. Catal., 2008, 257, 356-368.
- 7. C. Pirez, M. Capron, H. Jobic, F. Dumeignil and L. Jalowiecki-Duhamel, *Angew. Chem. Int. Ed.*, 2011, **50**, 10193-10197.
- L. Huang, J. Xie, W. Chu, R. Chen, D. Chu and A. T. Hsu, *Catal. Commun.*, 2009, 10, 502-508.
- S. M. de Lima, A. M. da Silva, L. O. O. da Costa, J. M. Assaf, G. Jacobs, B. H. Davis,
 L. V. Mattos and F. B. Noronha, *Appl. Catal.*, A, 2010, **377**, 181-190.
- 10. F. Frusteri, S. Freni, V. Chiodo, S. Donato, G. Bonura and S. Cavallaro, *Int. J. Hydrogen Energy*, 2006, **31**, 2193-2199.
- S. M. de Lima, A. M. da Silva, L. O. O. da Costa, U. M. Graham, G. Jacobs, B. H. Davis, L. V. Mattos and F. B. Noronha, *J. Catal.*, 2009, **268**, 268-281.
- 12. S. M. de Lima, A. M. da Silva, L. O. O. da Costa, J. M. Assaf, L. V. Mattos, R. Sarkari, A. Venugopal and F. B. Noronha, *Appl. Catal., B*, 2012, **121-122**, 1-9.
- 13. Z. Wang, H. Wang and Y. Liu, *RSC Adv.*, 2013, **3**, 10027-10036.
- 14. M. Morales and M. Segarra, *Appl. Catal., A*, 2015, **502**, 305-311.
- 15. S.-F. Weng, H.-C. Hsieh and C.-S. Lee, *Int. J. Hydrogen Energy*, 2017, **42**, 2849-2860.
- 16. S.-F. Weng, Y.-H. Wang and C.-S. Lee, *Appl. Catal., B*, 2013, **134-135**, 359-366.
- 17. H.-C. Hsieh, Y.-C. Chang, P.-W. Tsai, Y.-Y. Lin, Y.-C. Chuang, H.-S. Sheu and C.-S. Lee, *Catal. Sci. Technol.*, 2019, **9**, 1406-1419.