Effect of the coordination of the π -acceptor 4-cyanopyridine ligand on the structural and electronic properties of the *meso*-tetra(*para*-methoxy) and the *meso*-tetra(*para*-chlorophenyl) porphyrins cobalt(II) coordination compounds. Application in the catalytic degradation of the methylene blue dye

Table of contents

1. Mass spectrometrypage 2	
2. ¹ H NMR spectrapage 3	
3. Fluorescence spectroscopypage 4	
4. Crystallographic datapage 5	
5. The catalytic Adsorption and degradation of the MB dyepage 1	l

1. Mass spectroscopy

Figure SI-1. ESI- spectrum of complex **2** showing the isotopic ratio in m/z = 913 region ([Co^{II}(TCIPP)(4-CNpy)]⁺). The solvent used is the THF with a concentration of 5.10⁻³M and diluted in methanol with a concentration of 5.10⁻⁵ M.

2. ¹H NMR spectroscopy

Figure SI-2. ¹H NMR (400 MHz) spectra in CDCl₃ of complex [Co^{II}(TMPP)(4-CNpy] (1). The concentration is $\sim 10^{-3}$ M.

Figure SI-3. ¹H NMR (400 MHz) spectra in CDCl₃ of complex [Co^{II}(TClPP)(4-CNpy] (2). The concentration is $\sim 10^{-3}$ M.

3. Fluorescence spectroscopy

Figure SI-4. Fluorescence decay profiles of [Co^{II}(TMPP)(4-CNpy)] (1) (left) and [Co^{II}(TClPP)(4-CNpy)] (2) (right).

4. X-ray crystallography

Table SI-1. Selected bond distances (Å) and angles (°) in the molecular structures of complexes 1-2.

Comj	plex 1	Complex 2		
	Cobaltous coordir	nation polyhedron		
 Co-N1	1.987(3)	Co-N1	1.968(2)	
Co-N2	1.977(3)	Co-N2	1.976(2)	
Co-N3	1.984(3)	Co-N3	1.983(2)	
Co-N4	1.990(3)	Co-N4	1.980(2)	
Co-N5	2.209(3)	Co-N5	2.196(3)	
N1-Co-N2	90.21(12)	N1-Co-N2	89.57(10)	
N1-Co-N3	171.05(12)	N1-Co-N3	175.71(10)	
N1-Co-N4	89.51(12)	N1-Co-N4	89.85(10)	
N2-Co-N3	89.21(12)	N2-Co-N3	90.15(10)	
N3-Co-N4	90.28(12)	N3-Co-N4	89.67(11)	
N2-Co-N4	174.92(11)	N2-Co-N4	169.84(11)	
N5-Co-N1	94.77(11)	N5-Co-N1	94.24(9)	
N5-Co-N2	91.96(11)	N5-Co-N2	94.55(10)	
N5-Co-N3	94.17(11	N5-Co-N3	90.05(10)	
N5-Co-N4	93.11(11)	N5-Co-N4	95.62(10)	

4-cyanopyridine axial ligand

1.340(5)	N5-C45	1.338(4)
1.370(5)	C45-C46	1.384(5)
1.387(5)	C46-C47	1.379(5)
1.378(5)	C47-C48	1.392(5)
1.390(5)	C48-C49	1.382(5
1.332(4)	C49-N5	1.326(4)
1.449(5)	C47-C50	1.446(5)
1.139(5)	C50-N6	1.146(5)
120.9(2)	C45-N5-Co	121.4(2)
122.0(2)	C49-N5-Co	120.7(2)
117.0(3)	C45-N5-C49	117.7(3)
119.5(4)	C46-C47-C50	121.5(3)
121.3(3)	C48-C47-C50	119.6(3)
178.7(5)	C47-C50-N6	179.1(5)
	$\begin{array}{c} 1.340(5)\\ 1.370(5)\\ 1.387(5)\\ 1.387(5)\\ 1.390(5)\\ 1.390(5)\\ 1.332(4)\\ 1.449(5)\\ 1.139(5)\\ 120.9(2)\\ 122.0(2)\\ 117.0(3)\\ 119.5(4)\\ 121.3(3)\\ 178.7(5) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Table SI-2. Crystal data and structural refinement for (2), [Co^{II}(TMPP)(4,4'-bipy)].CHCl₃ (1) and [Co^{II}(TClPP)(4,4'-bipy)] (2).

	Complex 1 TMPP-4-CNpy	Complex 2 TCIPP-4-CNpy	
Formula Crystal System Crystal a (Å) b (Å) c (Å) α (°) β (°) γ (°)	$\begin{array}{c} C_{55}H_{41}N_6O_4Cl_7Co\\ Monoclinic\\ C2/c\\ 36.676\ (4)\\ 13.413\ (2)\\ 19.944\ (2)\\ 90.00\\ 103.378\ (4)\\ 90.00\\ \end{array}$	$C_{50}H_{28}N_6Cl_4Co$ Triclinic <i>P-1</i> 11.081(2) 13.386(3) 15.426(3) 83.38(3) 83.88(3) 88.67(3)	
$V(Å^{3})$ Z $\rho_{calc}./ \text{ g cm}^{-3}$ X-ray radiation $\mu/\text{ mm}^{-1}$ $F(000)$	9544.6(18) 8 1.413 Μο Κα 0.583 4184	2259.8(8) 2 1.343 Μο Κα 0.658 930	
Crystal size (mm ³) Crystal Color Crystal Shape T (K) $\theta_{min} - \theta_{max}$ (°) Limiting indices	$\begin{array}{c} 0.56 \ge 0.31 \ge 0.07 \\ & dark \\ prism \\ & 150 \ (2) \\ & 3.038 - 25.998 \\ -40 \le h \le 40, \ -16 \le k \le 15 \\ & -14 \le 1 \le 24 \\ & 0.0112 \end{array}$	$\begin{array}{c} 0.40 \ x \ 0.30 \ x \ 0.29 \\ & black \\ & block \\ 200 \ (2) \\ 1.915 - 25.999 \\ -13 \le h \le 13, -16 \le k \le 16 \\ & -18 \le 1 \le 19 \\ \end{array}$	
R(<i>ini</i>) Reflections collected/unique Observed data [$I_o > 2\sigma(F_o)$] Parameters/Rest S [all data] $R_1^a, wR_2^c [F_o > 4\sigma(F_o)]$ [all data]	0.0413 $39202 / 9176$ 7380 $640 / 75$ 1.033 $R_{I} \le 0.0683, wR_{2} = 0.1695$ $R_{I} = 0.0860, wR_{2} = 0.1847$	$30240 / 8766$ 6899 $587 / 0$ 1.131 $R_{1} = 0.0638, wR_{2} = 0.1801$ $R_{1} = 0.0821, wR_{2} = 0.2025$	

 $\overline{a:R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, b: wR_2} = \{\Sigma [w(|F_0|^2 - |F_c|^2)^2] / \Sigma [w(|F_0|^2)^2]$

Figure SI-5. Coordination polyhedra of the cobalt center metal in [Co^{II}(TMPP)(4-CNpy)] (1) (left) and In [Co^{II}(TClPP)(4-CNpy)] (2) (right).

$\overline{D - H^{\dots}A^a}$	Symmetry of A	DA (Å)	D-HA (°)
(Complex 1		
С8-Н8-О2А	1-x.1-y.2-z	3.325(4)	147
C27A-H27C-C13B	x = 1/2 = 3/2 = y = 1/2	3 219(13)	154
C49-H49-N4	X 172,572 y,21172	3.121(5)	121
C53-H53-N2	XV7	3.121(5) 3.103(5)	120
C55B-H55-N2	x y - 1 + z	3 199(7)	143
C52-H52-N6	3/2-x 3/2-v 2-z	3 544(9)	136
C3-H3-CL3B	$3/2 - x_1 1/2 + y_1 1/2 - z_2$	3.521(9)	124
C8-H8-O2B	1-x.1-v.2-z	3.5325(5)	147
C12-H12-O1A	1-x.y-1.3/2-z	3.769(11)	141
C13-H13-CL3A	3/2-x.1/2-v.1-z	3.412(6)	134
C48-H48A-O3A	3/2-x, 1/2-y, 1-z	3.431(7)	142
C48-H48A-O3B	3/2-x, 1/2-y, 1-z	3.431(7)	142
C17-H17-N6	3/2-x,y-1/2,3/2-z	3.579(6)	129
C22-H22-Cl1A	3/2-x, 3/2-y, 1-z	3.806(6)	144
C22-H22-Cl1B	3/2-x, 3/2-y, 1-z	3.806(6)	144
C26-H26-O2A	x,1-y,z-1/2	3.707(5)	165
C26-H26-O28	x,1-y,z-1/2	3.707(5)	165
C	Complex 2		
C48-H48-N6	1-x,1-y,2-z	3.527(6)	156

Table-SI-3. Selected hydrogen bonds for complexes 1-2.

 $\overline{a: D = \text{donor atom and } A = \text{acceptor atom.}}$

Table-SI-4. Selected intermolecular C–H...Cg interactions of complexes 1-2.

D –H····Aª	Symmetry of A	DA (Å)	D–H…A (°)
	Complex 1		
C27A-H27A-Cg12	1-x,1+y,3/2-z	3.719(9)	139
C30A-H30A-Cg1	x,1-y,1/2+z	3.680(11)	131
C30B-H30B-Cg1	x, 1-y, 1/2+z	3.619(10)	125
C34A-H34C-Cg4	1-x,y,3/2-z	3.463(15)	115
C46-H46-Cg3	x,1-y,z-1/2	3.647(4)	134
C48-H48B-Cg14	3/2-x,3/2-y,1-z	3.664(6)	153
C56-H53-Cg11	1-x, 1+y, 3/2-z	3.563(4)	147
C27B-H27D-Cg11	1-x,1+y,3/2-z	3.659(12)	126
C27B-27F-Cg3	x,1+y,z	3.536(14)	120
C41B-H41D-Cg9	x,y-1,z	3.36(3)	113
C41B-H41F-Cg1	x,y-1,z	3.7(3)	159

Complex 2

C48-H48-N6	-x+1,-y+1,-z+2	3.527 (6)	155
C23-H23-Cg1	1-x,1-y,1-z	3.613(4)	137

^a: D = donor atom and A = acceptor atom.

Complex 1

- Cg1 is the centroid of the N1/C(1)-C(4) phenyl ring.

- Cg3 is the centroid of the N3/C(11)-C(14) phenyl ring.

-Cg4 is the centroid of the N4/C(16)-C(19) phenyl ring.

-Cg9 is the centroid of the N5/C(49)-C(53) phenyl ring. -Cg11 is the centroid of the C(28A)-C(33A) phenyl ring.

-Cg12 is the centroid of the C(28A)-C(33A) phenyl ring.

- Cg_{12} is the centroid of the C(25b)-C(55b) phenyl ring.

-Cg14 is the centroid of the C(42)-C(47) phenyl ring.

Complex 2

- Cg1 is the centroid of the N1/C(1)-C(4) phenyl ring.

Table-SI-5. Intermolecular interactions type Cg...Cg^{a,} for complex **2**.

Cg(I) ^a	Cg(J) ^a	CgCg ^a	α^{a}	CgI_Perp ^a	CgJ_perp ^a
Cg(1) ^b	Cg2°	3.785(2)	15.1(2)	3.397(1)	3.614(1)

a: Cg...Cg = disytance brtween ring centroids, α = dihedral angle between planes I and J, CgI_Perp =

perpendicular distance of Cg(I) on ring J, CgJ_Perp = perpendicular distance of Cg(J) on ring I.

^b: Cgl = the centroid of the N1/C(1)-C(4) phenyl ring.

°: Cg2 = the centroid of the N2/C(6)-C(9) phenyl ring.

Symmetry code: -x,1-y,1-z

Figure SI-6. The crystal structure of 1 showing the chloroform solvent molecules occupying the voids parallel to the [010] direction.

Figure SI-7. Schematic representation showing the weak C–H···N6 intramolecular hydrogen, weak C–H···Cg end Cg...Cg π - π intermolecular interactions in complex 2.

Figure SI-8. 2D fingerprint plots of complex 1 with the major decomposition plots.

Figure SI-9. 2D fingerprint plots of complex 2 with the major decomposition plots.

5. The catalytic Adsorption and degradation of the MB dye

Figure SI-10. Schematic representation showing the adsorption of the methylene blue dye molecules on complexes **1-2**.