Fig. S1. ¹H NMR spectra of 10 in DMSO- d_6 .

- Fig. S2. ESI-MS spectrum of 10.
- Fig. S3. Fatigue resistance of 10.
- Fig. S4. The binding constant of Hg²⁺ with 10 was calculated to be 0.42×10^4 M⁻¹

Fig. S5. The detection limit of Hg^{2+} was calculated to be 0.14 μ M.

Fig. S6. Changes in fluorescence of 10-Hg²⁺ induced by UV/vis lights.

Fig. S7. ¹H NMR spectra measured during the titration of 10 with Hg²⁺ in DMSO- d_6 .

Fig. S8. Linear fitting of the absorption intensity at 555 nm vs Cu²⁺ concentration.

Fig. S9. The association constant of 10 to Cu^{2+} was found to be 1.76×10^4 M⁻¹.

Fig. S10. The detection limit for Cu^{2+} was estimated to be 0.51 μM

Fig. S11. Job's plot for determining the stoichiometry of 10 and Cu²⁺.

Fig. S12. ESI-MS spectrum of 10 upon addition of Cu²⁺.

Fig. S13. ¹H NMR spectra measured during the titration of 10 with Cu^{2+} in THF- d_8 .

Fig. S14. Corresponding truth table of the combined logic circuit.

Fig S1

Fig S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig S8

Fig. S9

Fig. S10

Fig S11

Fig S12

Fig S13

Inputs				Output
In 1 (UV)	In 2 (Vis)	In 3 (Hg ²⁺)	In 4 (EDTA)	Out1 (F _{617 nm})
0	0	0	0	0
1	0	0	0	0
0	1	0	0	0
0	0	1	0	1
0	0	0	1	0
1	1	0	0	0
1	0	1	0	0
1	0	0	1	0
0	1	1	0	1
0	1	0	1	0
0	0	1	1	0
1	1	1	0	1
1	1	0	1	0
1	0	1	1	0
0	1	1	1	0
1	1	1	1	0

Fig. S14