Supplementary Information

Double-layer carbon protected CoS₂ nanoparticles as an advanced anode for

sodium-ion batteries

Xiang Yao, Hui Cheng, Yuping Huang, Zhouyang Jiang, Qingyue Han and Suqing Wang*

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P.R. China

* The corresponding authors: cesqwang@scut.edu.cn

Fig. S1. (a) XRD pattern of the CoS_2 ; (b) XRD pattern of the CoS_2/CNT composite.

Fig. S2. XPS spectra of the CoS₂@GC@B-CNT.

Fig. S3. First three CV curves of the CoS₂@GC@B-CNT electrode at scan rate of 0.2 mV s⁻¹.

Fig. S4. (a) XRD pattern of the B-CNT; (b) SEM image of the B-CNT; (c) First charge/discharge curves of the B-CNT and (d) Cycle performance of the B-CNT at a current density of 0.1 A g^{-1} during 100 cycles.

Fig. S5. Cycle performance of the CoS_2 and CoS_2/CNT composite at 0.1 A g⁻¹.

Fig. S6. Rate performance of the CoS_2 and CoS_2/CNT composite under different current densities.

Fig. S7. (a) SEM image of bare CoS_2 ; (b) SEM image of bare CoS_2 after 100 cycles; (c) SEM image of the CoS_2/CNT ; (d) SEM image of the CoS_2/CNT after 100 cycles.

Table S1. Comparison of sodium storage performance of various cobalt sulfide-based electrodes in

 the carbonate ester-based electrolyte.

Materials	Current density [A g ⁻¹]	Cycle number	Specific capacity [mAh g ⁻¹]	Current density [A g ⁻¹]	Specific capacity [mAh g ⁻¹]	Ref.
CoS2@GC@B-CNT	0.1 5	100 900	550.0 432.6	1 2 5 10	471.0 455.9 438.0 419.6	This work
CoS ₂ /multi-walled carbon nanotube	0.1	100	411	0.8	242.3	[S1]
CoS ₂ triple-shelled nanoboxes	0.2	100	454	5	346	[S2]

Co ₃ S ₄ @polyaniline nanotubes	0.2	100	252.5	4	184.1	[83]	
CoS nanowires@ peapod-like carbon	0.1	100	294	5	235	[S4]	
CoS ₂ -CoS-graphitic carbon microspheres	0.2	100	334	1	411	[85]	
Co ₉ S ₈ -carbon	0.5	50	404	1.5	326	[S6]	
Co ₃ S ₄ @N-rich carbon	0.1	100	420.9	1.4	151.2	[S7]	
Carbon nanotube /CoS@carbon	0.1	100	470	5	276	[S8]	

References

- [S1] Z. Shadike, M.-H. Cao, F. Ding, L. Sang and Z. Fu, Chem. Commun., 2015, 51, 10486-10489.
- [S2] X. Wang, Y. Chen, Y. Fang, J. Zhang, S. Gao and X. Lou, Angew. Chem. Int. Ed., 2019, 58, 2675-2679.
- [S3] Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wang and G. Cao, J. Mater. Chem. A, 2016, 4, 5505-5516.
- [S4] C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Adv. Mate.*, 2016, 28, 7276-7283.
- [S5] J.S. Cho, J.M. Won, J.-K. Lee and Y.C. Kang, Nano Energ, 2016, 26, 466-478.
- [S6] Y.N. Ko and Y.C. Kang, *Carbon*, 2015, 94, 85-90.
- [S7] Y. Jiang, G. Zou, W. Hong, Y. Zhang, Y. Zhang, H. Shuai, W. Xu, H. Hou and X. Ji, *Nanoscale*, 2018, 10, 18786-18794.
- [S8] F. Han, C.Y.J. Tan and Z. Gao, J. Power Sources, 2017, 339, 41-50.