Electronic Supplementary Information for

Unusual Constituents from the Medicinal Mushroom

Ganoderma lingzhi

Zhen-Zhu Zhao^{a,b}, Xu-Bo Liang^a, Wei-Sheng Feng^{a,b}, Ya Wu^{a,b}, Yan-Le Zhi^{a,b}, Gui-Min Xue^{a,b}, He-Ping Chen^{c,*}, Ji-Kai Liu^{c,*} ^aCollege of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China ^bCollaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese

Medicine Development of Henan Province, Zhengzhou 450046, China ^cSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China

Corresponding Authors

*Tel/fax: +86-27-67841275. E-mail: chenhp@mail.scuec.edu.cn (H.-P. Chen)

*Tel/fax: +86-27-67842267. E-mail: jkliu@mail.kib.ac.cn; liujikai@mail.scuec.edu.cn (J.-K. Liu)

Contents

1 Crystal data of compounds 2 and 5	4
Table 1S. Crystal data and structure refinement for Cu_2_0m	4
Table 2S. Crystal data and structure refinement for Cu_5_0m	5
2. Supplementary Figures	6
Figure 1S. ¹ H NMR spectrum of 1 (600 MHz, CD ₃ OD)	6
Figure 2S. ¹³ C NMR and DEPT spectra of 1 (150 MHz, CD ₃ OD)	7
Figure 3S. HSQC spectrum of 1 (CD ₃ OD)	8
Figure 4S. ¹ H- ¹ H COSY spectrum of 1 (CD ₃ OD)	9
Figure 5S. HMBC spectrum of 1 (CD ₃ OD)	10
Figure 6S. ROESY spectrum of 1 (CD ₃ OD)	11
Figure 7S. HREIMS (+) report of 1.	12
Figure 8S. ¹ H NMR spectrum of 2 (600 MHz, CDCl ₃)	13
Figure 9S. ¹³ C NMR and DEPT spectra of 2 (150 MHz, CDCl ₃)	14
Figure 10S. HSQC spectrum of 2 (CDCl ₃)	15
Figure 11S. ¹ H- ¹ H COSY spectrum of 2 (CDCl ₃)	16
Figure 12S. HMBC spectrum of 2 (CDCl ₃)	17
Figure 13S. ROESY spectrum of 2 (CDCl ₃)	18
Figure 14S. HREIMS (+) report of 2	19
Figure 15S. ¹ H NMR spectrum of 3 (600 MHz, CDCl ₃)	20
Figure 16S. ¹³ C NMR and DEPT spectra of 3 (150 MHz, CDCl ₃)	21
Figure 17S. HSQC spectrum of 3 (CDCl ₃)	22
Figure 18S. ¹ H- ¹ H COSY spectrum of 3 (CDCl ₃)	23
Figure 19S. HMBC spectrum of 3 (CDCl ₃)	24
Figure 20S. ROESY spectrum of 3 (CDCl ₃)	25
Figure 21S. HRESIMS (+) report of 3	26
Figure 22S. ¹ H NMR spectrum of 4 (600 MHz, CD ₃ OD)	27
Figure 23S. ¹³ C NMR and DEPT spectra of 4 (150 MHz, CD ₃ OD)	28
Figure 24S. HSQC spectrum of 4 (CD ₃ OD)	29
Figure 25S. ¹ H- ¹ H COSY spectrum of 4 (CD ₃ OD)	31
Figure 26S. HMBC spectrum of 4 (CD ₃ OD)	32
Figure 27S. ROESY spectrum of 4 (CD ₃ OD)	33
Figure 28S. HRESIMS (+) report of 4	34
Figure 29S. ¹ H NMR spectrum of 5 (600 MHz, CD ₃ OD)	35
Figure 30S. ¹³ C NMR and DEPT spectra of 5 (150 MHz, CD ₃ OD)	36
Figure 31S. HSQC spectrum of 5 (CD ₃ OD)	37
Figure 32S. ¹ H- ¹ H COSY spectrum of 5 (CD ₃ OD)	38
Figure 33S. HMBC spectrum of 5 (CD ₃ OD)	39
Figure 34S. ROESY spectrum of 5 (CD ₃ OD)	40
Figure 35S. HRESIMS (+) report of 5	41
Figure 36S. ¹ H NMR spectrum of 6 and 7 (600 MHz, CDCl ₃)	41
Figure 37S. ¹³ C NMR and DEPT spectra of 6 and 7 (150 MHz, CDCl ₃)	43
Figure 38S. HSQC spectrum of 6 and 7 (CDCl ₃)	44

Figure 39S. ¹ H- ¹ H COSY spectrum of 6 and 7 (CDCl ₃)	45
Figure 40S. HMBC spectrum of 6 and 7 (CDCl ₃)	46
Figure 41S. ROESY spectrum of 6 and 7 (CDCl ₃)	47
Figure 42S. HREIMS (+) report of 6	
Figure 43S. HRESIMS (+) report of 7	49
Figure 44S. ¹ H NMR spectrum of 8 (600 MHz, CDCl ₃)	
Figure 45S. ¹³ C NMR and DEPT spectra of 8 (150 MHz, CDCl ₃).	51
Figure 46S. HSQC spectrum of 8 (CDCl ₃)	
Figure 47S. ¹ H- ¹ H COSY spectrum of 8 (CDCl ₃)	53
Figure 48S. HMBC spectrum of 8 (CDCl ₃)	54
Figure 49S. HREIMS (+) report of 8	55
Figure 50S. ¹ H NMR spectrum of 9 (500 MHz, CDCl ₃)	
Figure 51S. ¹³ C NMR and DEPT spectra of 9 (125 MHz, CDCl ₃).	57
Figure 52S. ¹ H NMR spectrum of 9a (800 MHz, CDCl ₃)	
Figure 53S. ¹³ C NMR and DEPT spectra of 9a (200 MHz, CDCl ₃))59
3. Computational details for 8	60
Table 3S. Important thermodynamic parameters (a. u.) of the	optimized 8 at
B3LYP/6-31G(d,p) level in the gas phase.	61
Table 4S. Conformational analysis of 8 (aRelative energy; b	'Conformational
distribution)	61
References	61

1. Crystal data of compounds 1 and 5

Table 1S. Crystal data and structure	e refinement for Cu_1_0m					
Identification code	Cu_1_0m					
Empirical formula	$C_{15} H_{22} O_2$	$C_{15} H_{22} O_2$				
Formula weight	234.32					
Temperature	100(2) K					
Wavelength	1.54178 Å					
Crystal system	Orthorhombic					
Space group	P2 ₁ 2 ₁ 2 ₁					
Unit cell dimensions	a = 7.70800(10) Å	α= 90°.				
	b = 12.5490(2) Å	β= 90°.				
	c = 13.1278(2) Å	$\gamma = 90^{\circ}$.				
Volume	1269.82(3) Å ³					
Z	4					
Density (calculated)	1.226 mg/m ³					
Absorption coefficient	0.621 mm ⁻¹					
F(000)	512					
Crystal size	0.850 x 0.220 x 0.190 m	n ³				
Theta range for data collection	4.875 to 70.187°.					
Index ranges	-8<=h<=9, -15<=k<=14,	-8<=h<=9, -15<=k<=14, -15<=l<=14				
Reflections collected	8045	8045				
Independent reflections	2306 [R(int) = 0.0442]	2306 [R(int) = 0.0442]				
Completeness to theta = 67.679°	99.3 %	99.3 %				
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents				
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²				
Data / restraints / parameters	2306 / 0 / 161	2306 / 0 / 161				
Goodness-of-fit on F ²	1.061					
Final R indices [I>2sigma(I)]	R1 = 0.0513, wR2 = 0.13	R1 = 0.0513, wR2 = 0.1314				
R indices (all data)	R1 = 0.0513, $wR2 = 0.13$	15				
Absolute structure parameter	0.09(6)					
Extinction coefficient	0.0064(17)	0.0064(17)				
Largest diff. peak and hole	0.292 and -0.319 e.Å ⁻³	0.292 and -0.319 e.Å ⁻³				

Identification code	Cu_ 5 _0m				
Empirical formula	$C_{16} H_{24} O_4$				
Formula weight	280.35				
Temperature	100(2) K				
Wavelength	1.54178 Å				
Crystal system	Monoclinic				
Space group	P2 ₁				
Unit cell dimensions	a = 6.4948(2) Å	<i>α</i> = 90°.			
	b = 7.4524(3) Å	β=101.0040(10)°.			
	c = 15.2812(6) Å	$\gamma = 90^{\circ}$.			
Volume	726.04(5) Å ³				
Z	2				
Density (calculated)	1.282 mg/m ³				
Absorption coefficient	0.736 mm ⁻¹				
F(000)	304				
Crystal size	0.640 x 0.420 x 0.100 mm ³				
Theta range for data collection	2.946 to 70.141°.				
Index ranges	-7<=h<=7, -8<=k<=8, -15<=l<=17				
Reflections collected	7540				
Independent reflections	2510 [R(int) = 0.0263]				
Completeness to theta = 67.679°	94.8 %				
Absorption correction	Semi-empirical from equivalents				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	2510 / 1 / 191				
Goodness-of-fit on F ²	1.056				
Final R indices [I>2sigma(I)]	R1 = 0.0327, $wR2 = 0.0844$				
R indices (all data)	R1 = 0.0327, wR2 = 0.0845				
Absolute structure parameter	0.17(3)				
Extinction coefficient Largest diff. peak and hole 0.217	n/a and -0.260	e.Å ⁻³			

Table 2S. Crystal data and structure refinement for Cu_5_0m

2. Supplementary Figures

Figure 1S. ¹H NMR spectrum of **1** (600 MHz, CDCl₃) ¹¹g14. 82. 1. 1r — h CDCl3 F:\\ nmr 9</sup>

|--|

Figure 2S. ¹³C NMR and DEPT spectra of 1 (150 MHz, CDCl₃)

Figure 3S. HSQC spectrum of 1 (CDCl₃)

llg14.86.1.2rr — hsqc CDC13 av600

Figure 4S. ¹H-¹H COSY spectrum of **1** (CDCl₃)

Figure 5S. HMBC spectrum of 1 (CDCl₃)

11g14.85.1.2rr — hmbc CDC13 av600

Figure 6S. ROESY spectrum of **1** (CDCl₃)

11g14.83.1.2rr — roesy CDC13 av600

Figure 7S. HREIMS (+) report of 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

Page 1

Figure 8S. ¹H NMR spectrum of 2 (600 MHz, CD₃OD)

Figure 9S. ¹³C NMR and DEPT spectra of 2 (150 MHz, CD₃OD)

Figure 10S. HSQC spectrum of 2 (CD₃OD)

Figure 11S. ¹H-¹H COSY spectrum of 2 (CD₃OD)

Figure 12S. HMBC spectrum of 2 (CD₃OD)

11g7.85.1.2rr — hmbc MeOD av600

Figure 14S. HREIMS (+) report of 2.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

Page 1

Figure 15S. ¹H NMR spectrum of 3 (600 MHz, CDCl₃)

11g33.25.1.1r — 11g33 hsqc

Figure 16S. ¹³C NMR and DEPT spectra of **3** (150 MHz, CDCl₃)

startifies to distant staff start formation	เศรณะโรงไป เป็นเป็น เป็นไป เกมโปลาเป็นไป	านกับประกอบสมบันเป็นไป	alimentaria da natura	an a	a hite milital a shire a sure a s	va sá se ¹ nileitin Anna 16,174	ทั้งสอดสัญญาติเสาะที่ได้เป็นไปเป็นส	unu recenti di anta Mariat	hana likantu umutuna	an and the line of the second seco	a Manhiliptu Bilini Allanim	ulum Philaten and Advantation	nava selimat sikin di kata	d'u'taliid matrii in An		illi militin diri	المتناصل والمتناس	silinia ninainawa	n interesting the	dirikasaninin	divan Matalin.
		La contra trans	and a subject of		10 mil																
univirlitititititititi	andadaren en e	ludd ywraithodd	han an a	enderinden sich die Verlagen die	linadoviniu/wilina/pacida	Advirtaniania atalan ay	diwiller waterele	levi)ve/ulii+tiivevi	lladd insel an tinign	ulonn ^u diyi)dilil	niningulinininini	Unity/with/hilds/and	annanna	ilin nimittilih	ulu kana kana kana kana kana kana kana kan	And the second states of the	IN WHERITARY WHERITA	iyy ing manaking the first state	(A))IPANIJATA	halidida da seconda da	millular
ي 11g33. 22. 1. 1r	• — 11g33	c13 a	and dept	rö	atrona 1 m	Di con di di a			က်	P 1 1 P P 1	. 1.1.1010.00	addit of other	, i i i i i i i i i i i i i i i i i i i	L estores	(0 4 0		<u> </u>		- 0) (O) (O)	. 1
205				— 169					— 122						/ 65.6 / 60.4 / 56.9	/ 55. / 49.0	47.	√ 39.2 √ 37.9		- 22.8 - 17.6	
																	1				
hadiya inganiya nadiya nadiya na na	ullinging many in the	indianali (internationali)	ing and a construction of	n ning an	lindador ayou nid	halerindayi	liailinan vin primere	Hivytration	Mannanan	anynyn	hile lediterited a provided a	ANNO ANNO ANNO ANNO ANN	unnunninn phil	likilaine kiriste	14/14/14/14/14/14/14	diningto pipilol	H WILLY WE TELEVIS	alatipaji ujahayana	Number	nilanadinan	uhn an ayuk
210	200 1	190	180	170	160	150	140	130	120	110	100	90	80	70	60	5	0	40	30	20	

Figure 17S. HSQC spectrum of 3 (CDCl₃)

Figure 18S. ¹H-¹H COSY spectrum of **3** (CDCl₃)

Figure 19S. HMBC spectrum of 3 (CDCl₃)

11g33.29.1.2rr — 11g33 roesy

Figure 21S. HRESIMS (+) report of 3

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 5:40 PM on: 3/9/2017

Figure 22S. ¹H NMR spectrum of 4 (600 MHz, CD₃OD)

11ga14a. 1. 1. 1r — 11ga14a

Figure 23S. ¹³C NMR and DEPT spectra of 4 (150 MHz, CD₃OD)

llgal4a.3.1.1r — llgal4a

Figure 25S. ¹H-¹H COSY spectrum of 4 (CD₃OD)

llgal4a.10.1.2rr — COSY-sxhuo MeOD D:\\ root 9

Figure 26S. HMBC spectrum of **4** (CD₃OD)

llga14a.10.1.2rr — 11ga14a

Figure 28S. HRESIMS (+) report of 4

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 10:50 AM on: 11/27/2017

Figure 29S. ¹H NMR spectrum of 5 (600 MHz, CD₃OD)

ecg485	. 21.	1.1r		ecg485	Н
--------	-------	------	--	--------	---

.88	000 0
0 \/	

Figure 30S. ¹³C NMR and DEPT spectra of 5 (150 MHz, CD₃OD)

t.24.1.1r —

Figure 31S. HSQC spectrum of **5** (CD₃OD)

llgc1.26.1.2rr — llgc1 hsqc

Figure 32S. ¹H-¹H COSY spectrum of **5** (CD₃OD) ¹¹gc1. 25. 1. 2rr - 11gc1</sup> cosy

Figure 33S. HMBC spectrum of **5** (CD₃OD) ^{11gc1. 27. 1. 2rr - 11gc1} hmbc

Figure 34S. ROESY spectrum of 5 (CD₃OD)

llgcl.28.1.2rr — llgcl roesy

Figure 35S. HRESIMS (+) report of 5

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 10:21 AM on: 11/27/2017

Figure 36S. ¹H NMR spectrum of 6 and 7 (600 MHz, CDCl₃)

llgf4b.21.1.1r — llgf4b hsqc

Figure 42S. HREIMS (+) report of 6

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

Page 1

Figure 43S. HRESIMS (+) report of 7

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 2:09 PM on: 4/14/2017

Figure 44S. ¹H NMR spectrum of 8 (600 MHz, CDCl₃)

Figure 49S. HREIMS (+) report of 8

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

Page 1

Figure 52S. ¹H NMR spectrum of 9a (500 MHz, CDCl₃)

llg2ac.21.1.1r — Bruker AViii-500MHz; llg2ac H

3. Computational details for 8

A conformation search based on molecular mechanics with MMFF94s force fields were performed for (6*S*)-**8** gave 10 stable conformers with distributions higher than 1%.^{1,2} All these conformers were further optimized by the density functional theory method at the B3LYP/6-31G(d,p) level in Gaussian 09 program package,³ led to six ((6*S*)-**8a**–(6*S*)-**8f**) conformers within 3 kcal/mol energy threshold from global minimum, respectively. The predominant conformers were subjected to theoretical calculation of ECD using timedependent density functional theory (TDDFT) at B3LYP/6-31G(d,p) level with IEFPCM model in air based on B3LYP/6-31G(d,p) optimized conformers. The calculated ECD curves for (6*S*)-**8** were weighted using SpecDis 1.71 with $\sigma = 0.2$ eV, and UV shift 11 nm, respectively.⁴ The ECD curve of the enantiomer (6*R*)-**8** was generated by SpecDis by the function "enantiomeric ECD".

level in th	e gus phuse.					
Species	E'=E+ZPE	Ε	Н	G	ΔE (kcal/mol)	$P_E\%$
(6 <i>S</i>) -8 a	-733.761789	-733.778874	-733.760845	-733.822524	0.00	50.7
(6 <i>S</i>) -8b	-733.760472	-733.777482	-733.759528	-733.820998	0.96	9.2
(6 <i>S</i>) -8c	-733.760548	-733.777528	-733.759603	-733.820912	1.01	5.1
(6 <i>S</i>) -8d	-733.761192	-733.778096	-733.760248	-733.821357	0.73	13.3
(6 <i>S</i>) -8 e	-733.761144	-733.778017	-733.760200	-733.821137	0.87	10.1
(6 <i>S</i>) -8f	-733.760329	-733.777416	-733.759384	-733.821258	0.79	11.7

 Table S1. Energy analysis for conformers of (6S)-8a-(6S)-8f at B3LYP/6-31G(d,p)

 level in the gas phase.

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

Atom	Х	Y	Z			
C(1)	0.595	-0.102	1.871			
C(2)	0.371	-0.265	0.341			
C(3)	0.981	-1.622	-0.107			
C(4)	1.135	0.847	-0.420			
C(5)	2.484	-1.644	-0.150			
C(6)	3.279	-0.560	-0.211			

Standard orientation of (6S)-8a

C(7)	2.651	0.784	-0.260
C(8)	4.782	-0.614	-0.228
O(9)	3.321	1.807	-0.232
C(10)	-3.477	0.407	0.033
C(11)	-3.314	-1.096	-0.165
C(12)	-1.875	-1.378	-0.041
C(13)	-1.141	-0.251	0.081
C(14)	-2.046	1.010	-0.044
O(15)	-4.207	-1.902	-0.357
C(16)	-1.849	2.064	1.062
C(17)	-1.871	1.680	-1.431
H(18)	0.029	-0.858	2.422
H(19)	1.654	-0.225	2.116
H(20)	0.284	0.882	2.224
H(21)	0.639	-2.425	0.556
H(22)	0.600	-1.883	-1.106
H(23)	0.934	0.753	-1.497
H(24)	0.829	1.851	-0.120
H(25)	2.945	-2.632	-0.136
H(26)	5.142	-1.645	-0.185
H(27)	5.178	-0.139	-1.131
H(28)	5.198	-0.057	0.618
H(29)	-4.174	0.829	-0.696
H(30)	-3.917	0.564	1.026
H(31)	-1.507	-2.397	-0.050
H(32)	-0.866	2.541	1.021
H(33)	-1.978	1.629	2.058
H(34)	-2.598	2.855	0.947
H(35)	-2.029	0.958	-2.239
H(36)	-2.612	2.479	-1.544
H(37)	-0.886	2.129	-1.562

Standard orientation of (6S)-8b

Atom	Х	Y	Z
C(1)	-0.637	-1.700	-1.193
C(2)	-0.342	-0.526	-0.228
C(3)	-0.874	-0.896	1.192
C(4)	-1.134	0.706	-0.732
C(5)	-2.373	-0.872	1.313
C(6)	-3.211	-0.231	0.477
C(7)	-2.650	0.537	-0.666
C(8)	-4.708	-0.241	0.616
O(9)	-3.376	1.070	-1.493

C(10)	3.354	0.579	0.501
C(11)	3.457	-0.818	-0.101
C(12)	2.080	-1.259	-0.372
C(13)	1.172	-0.291	-0.125
C(14)	1.883	1.034	0.284
O(15)	4.482	-1.449	-0.290
C(16)	1.856	2.053	-0.884
C(17)	1.344	1.699	1.567
H(18)	-0.214	-2.640	-0.831
H(19)	-1.713	-1.852	-1.300
H(20)	-0.224	-1.499	-2.186
H(21)	-0.499	-1.890	1.466
H(22)	-0.461	-0.215	1.947
H(23)	-0.911	1.587	-0.120
H(24)	-0.878	0.957	-1.765
H(25)	-2.791	-1.417	2.159
H(26)	-5.022	-0.832	1.480
H(27)	-5.096	0.777	0.725
H(28)	-5.177	-0.652	-0.283
H(29)	3.592	0.500	1.569
H(30)	4.093	1.253	0.060
H(31)	1.880	-2.260	-0.733
H(32)	0.852	2.414	-1.112
H(33)	2.272	1.611	-1.795
H(34)	2.467	2.924	-0.623
H(35)	1.383	1.012	2.419
H(36)	1.966	2.565	1.816
H(37)	0.317	2.059	1.466

Standard orientation of (6S)-8c

Atom	Х	Y	Z
C(1)	0.243	-1.930	-2.028
C(2)	-0.353	-1.008	-0.934
C(3)	-1.054	-1.871	0.148
C(4)	-1.476	-0.162	-1.581
C(5)	-1.943	-1.073	1.067
C(6)	-2.482	0.122	0.761
C(7)	-2.238	0.705	-0.587
C(8)	-3.344	0.922	1.697
O(9)	-2.675	1.804	-0.899
C(10)	2.895	0.626	0.515
C(11)	2.181	1.752	-0.226
C(12)	0.952	1.167	-0.788

C(13)	0.765	-0.109	-0.384
C(14)	1.855	-0.520	0.651
O(15)	2.576	2.897	-0.352
C(16)	1.285	-0.485	2.092
C(17)	2.525	-1.884	0.400
H(18)	0.969	-2.637	-1.623
H(19)	-0.557	-2.508	-2.502
H(20)	0.739	-1.338	-2.803
H(21)	-1.666	-2.626	-0.370
H(22)	-0.330	-2.444	0.733
H(23)	-1.119	0.469	-2.398
H(24)	-2.206	-0.858	-2.021
H(25)	-2.158	-1.513	2.040
H(26)	-3.475	0.410	2.654
H(27)	-2.901	1.906	1.881
H(28)	-4.329	1.108	1.257
H(29)	3.746	0.311	-0.102
H(30)	3.300	0.972	1.470
H(31)	0.308	1.746	-1.437
H(32)	0.530	-1.253	2.270
H(33)	0.835	0.487	2.312
H(34)	2.098	-0.654	2.807
H(35)	2.951	-1.945	-0.606
H(36)	3.344	-2.021	1.114
H(37)	1.838	-2.725	0.532

Standard orientation of (6S)-8d

Atom	Х	Y	Z
C(1)	0.617	-0.260	1.829
C(2)	0.390	-0.052	0.305
C(3)	0.951	-1.261	-0.492
C(4)	1.199	1.194	-0.137
C(5)	2.454	-1.343	-0.507
C(6)	3.289	-0.308	-0.305
C(7)	2.714	1.036	-0.042
C(8)	4.788	-0.416	-0.324
O(9)	3.429	1.999	0.197
C(10)	-3.524	-0.106	0.075
C(11)	-3.125	1.341	-0.192
C(12)	-1.658	1.393	-0.096
C(13)	-1.111	0.169	0.065
C(14)	-2.211	-0.935	-0.001
O(15)	-3.882	2.270	-0.412

C(16)	-2.181	-1.673	-1.365
C(17)	-2.165	-1.973	1.136
H(18)	0.114	-1.153	2.201
H(19)	1.684	-0.366	2.047
H(20)	0.241	0.602	2.388
H(21)	0.550	-2.201	-0.100
H(22)	0.607	-1.200	-1.534
H(23)	0.969	1.427	-1.186
H(24)	0.941	2.079	0.450
H(25)	2.876	-2.325	-0.720
H(26)	5.111	-1.441	-0.523
H(27)	5.215	0.244	-1.087
H(28)	5.211	-0.091	0.632
H(29)	-3.958	-0.150	1.082
H(30)	-4.297	-0.440	-0.622
H(31)	-1.131	2.337	-0.152
H(32)	-1.299	-2.305	-1.484
H(33)	-2.211	-0.963	-2.197
H(34)	-3.059	-2.322	-1.444
H(35)	-2.201	-1.495	2.120
H(36)	-3.035	-2.635	1.058
H(37)	-1.274	-2.605	1.094

Standard orientation of (6S)-8e

Atom	Х	Y	Ζ
C(1)	0.653	-1.118	1.420
C(2)	0.395	-0.186	0.213
C(3)	0.923	-0.854	-1.097
C(4)	1.223	1.108	0.416
C(5)	2.425	-0.896	-1.201
C(6)	3.278	-0.126	-0.502
C(7)	2.728	0.879	0.447
C(8)	4.776	-0.215	-0.606
O(9)	3.457	1.538	1.174
C(10)	-3.458	-0.064	-0.465
C(11)	-3.012	1.394	-0.473
C(12)	-1.557	1.383	-0.239
C(13)	-1.095	0.145	0.041
C(14)	-2.277	-0.864	0.151
O(15)	-3.717	2.367	-0.669
C(16)	-2.081	-2.195	-0.597
C(17)	-2.615	-1.152	1.637
H(18)	0.147	-2.080	1.313

H(19)	1.721	-1.325	1.520
H(20)	0.317	-0.653	2.351
H(21)	0.535	-1.873	-1.191
H(22)	0.526	-0.306	-1.965
H(23)	1.046	1.794	-0.422
H(24)	0.939	1.633	1.332
H(25)	2.830	-1.619	-1.909
H(26)	5.080	-0.980	-1.325
H(27)	5.202	0.747	-0.911
H(28)	5.217	-0.449	0.368
H(29)	-4.404	-0.190	0.067
H(30)	-3.631	-0.362	-1.507
H(31)	-0.981	2.297	-0.298
H(32)	-1.295	-2.815	-0.157
H(33)	-1.841	-2.034	-1.653
H(34)	-3.009	-2.775	-0.555
H(35)	-2.798	-0.222	2.184
H(36)	-3.526	-1.759	1.692
H(37)	-1.825	-1.699	2.153

Standard orientation of (6S)-8f

Atom	Х	Y	Ζ
C(1)	0.653	0.775	1.652
C(2)	0.387	-0.092	0.398
C(3)	1.039	-1.484	0.619
C(4)	1.100	0.534	-0.837
C(5)	2.544	-1.464	0.608
C(6)	3.299	-0.535	-0.008
C(7)	2.624	0.574	-0.729
C(8)	4.802	-0.536	-0.015
O(9)	3.261	1.470	-1.264
C(10)	-3.382	0.293	-0.585
C(11)	-3.139	-1.210	-0.559
C(12)	-1.718	-1.393	-0.217
C(13)	-1.113	-0.228	0.103
C(14)	-2.159	0.930	0.132
O(15)	-3.952	-2.083	-0.806
C(16)	-2.575	1.256	1.590
C(17)	-1.736	2.228	-0.580
H(18)	0.131	0.371	2.524
H(19)	1.721	0.792	1.882
H(20)	0.334	1.810	1.509
H(21)	0.679	-1.923	1.557

0.722	-2.175	-0.174
0.859	-0.064	-1.727
0.771	1.553	-1.040
3.039	-2.288	1.122
5.202	-1.386	0.544
5.185	-0.575	-1.040
5.193	0.389	0.422
-3.422	0.603	-1.637
-4.344	0.553	-0.135
-1.274	-2.380	-0.238
-1.765	1.701	2.170
-2.915	0.355	2.111
-3.404	1.972	1.579
-1.444	2.044	-1.618
-2.583	2.923	-0.594
-0.911	2.738	-0.076
	0.722 0.859 0.771 3.039 5.202 5.185 5.193 -3.422 -4.344 -1.274 -1.274 -1.765 -2.915 -3.404 -1.444 -2.583 -0.911	0.722 -2.175 0.859 -0.064 0.771 1.553 3.039 -2.288 5.202 -1.386 5.185 -0.575 5.193 0.389 -3.422 0.603 -1.274 -2.380 -1.765 1.701 -2.915 0.355 -3.404 1.972 -1.444 2.044 -2.583 2.923 -0.911 2.738

References:

- (1) Goto, H.; Osawa, E.; J. Am. Chem. Soc. 1989, 111, 8950-8951.
- (2) Goto, H.; Osawa, E.; J. Chem. Soc., Perkin Trans. 2, 1993, 187–198.
- (3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J.; Gaussian *09*, Revision B.01,Gaussian, Inc., Wallingford CT, 2010.
- (4) Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. Spec Dis, version 1.71, University of Würzburg, Germany, 2012