Supporting Information

Electrocatalytic Water Oxidation by a Ni(II) Salophen-type Complex

Mehri Aligholivand,^a Zohreh Shaghaghi,^{a,*} Rahman Bikas,^b Anna Kozakiewicz,^c

^a Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P.O. box 83714-161, Tabriz, Iran

^b Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran

^c Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland

Table of Contents

Content	Page no.
Fig. S1: Intermolecular C–H…O interactions in the crystal structure of complex 1	2
Fig. S2: The FT-IR spectrum of NiL (1)	3
Fig. S3: The ¹ H NMR spectrum of NiL (1)	4
Fig. S4: The thermogravimetric plot of NiL (1)	5
Fig. S5: CV for a fresh CPE (black), CPE-complex 1 (blue) and CPE-complex 1 after performing amperometry of 5 hours (pink) in the buffer solution (0.3 M) in the range of -0.6 to 1.6 V at pH=11 (a), pH=7 (b) and in the range of 0-0.6 at pH=3 (c)	6
Fig. S6 : EDX spectra of the surface of CPE modified with complex 1 after amperometry for 5h at pH=11 (a) and pH=7 (b)	7
Fig. S7 : The XRD pattern of the surface of bare CPE (a) and CPE-complex 1 after 5h amperometry at pH=11(b)	8
Table S1: Information of intermolecular hydrogen bond interactions in the crystal structure of complex 1	9

^{*} Corresponding author; E-mail: sho24@gmail.com

Fig. S1: Intermolecular C–H \cdots O interactions in the crystal structure of complex 1

Fig. S2: The FT-IR spectrum of NiL (1)

Fig. S3: The ¹H NMR spectrum of NiL (1)

Thermogravimetric analysis

The TGA plot of Ni(II) complex **1** shows that the complex is stable up to 400 °C with a DTG_{max} =410 °C. Decomposition for **1** involves four steps (see Fig. S3). The weight loss in the first stage is probably related to the omission of some small molecules such as CO₂ and N₂ molecules from the main body of the complex with a mass lose of 16.42% (calc. 17.09%). The second weight loss occurs in the range of 450-520 °C, which can be assigned to the release of – CH₃ group of complex **1** with a mass lose of 5.27% (Calc. 4.86 %). The third weight loss take places in the 520-590 °C which corresponds to the decomposition of some parts of aromatic ring containing chloro substitute with a mass lose of 13.29% (Calc. 14.29 %). Finally, the highest weight loss occurs in the range of 590-800 °C which corresponds to the decomposition of the residue aromatic groups and the formation of metal oxide lattice.

Temperature °C

Fig. S4: The thermogravimetric plot of NiL (1)

Fig. S5: CV for a fresh CPE (black), CPE-complex 1 (blue) and CPE-complex 1 after performing amperometry of 5 hours (pink) in the buffer solution (0.5 M) in the range of -0.6 to 1.6 V. *vs* Ag/AgCl at pH=11 (a), pH=7 (b) and in the range of 0-0.6 at pH=3 (c)

Fig. S6: EDX spectra of the surface of CPE modified with complex 1 after amperometry for 5h at pH=11 (a) and pH=7 (b)

Fig. S7: The XRD pattern of the surface of bare CPE (a) and CPE-complex 1 after 5h amperometry at pH=11(b)

D–H…A	d(D–H)	d(H···A)	<dha< th=""><th>$d(D \cdots A)$</th></dha<>	$d(D \cdots A)$
C4-H4AO24 ⁱ	0.930	2.585	163.28	3.487(18)
$C4-H4AO1^{i}$	0.930	2.666	141.43	3.443(17)
C25-H25CCl1 ⁱⁱ	0.960	2.740	111.14	3.207(17)

Table S1: Information of intermolecular hydrogen bond interactions in the crystal structure of complex 1

Symmetry code: ^{*i*}/1-*x*, 1/2+*y*, 1/2-*z*; ^{*ii*}/2-*x*, 1/2+*y*+2, 3/2-*z*;