Supporting Information

A magnetically separable and recyclable g-C₃N₄/Fe₃O₄/porous ruthenium nanocatalyst for the photocatalytic degradation of water-soluble aromatic amines and azo-dyes

Anupam Sahoo and Srikanta Patra*

School of Basic Sciences. Indian Institute of Technology Bhubaneswar, Argul, Jatni-752050, Orissa, India E-mail; <u>srikanta@iitbbs.ac.in</u>.

Table of content

Sr. No.	Description	Page No.
1	Chart S1. Chemical structure of aromatic amines used in this study.	S3
2	Chart S2. Chemical structure of azo dyes used in this study.	S4
	Table TS1. Comparison between the present and other related nanocatalysts	S5
	towards removal of aromatic amines.	
3	Table TS2. Catalytic reduction of azo dyes in presence of <i>g</i> -C ₃ N ₄ /Fe ₃ O ₄ / <i>p</i> -RuNP	S7
	nanocomposites and NaBH ₄ .	
4	Figure S1. FE-SEM images of (a) g -C ₃ N ₄ nanosheet, (b) g -C ₃ N ₄ /Fe ₃ O ₄ NP and (c)	S8
	g-C ₃ N ₄ /Fe ₃ O ₄ / p -RuNP nanocomposites and (d-f) their corresponding EDS spectra,	
	respectively. $\mathbf{E} = \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$	00
5	Figure S2. SEM image (a) and mapping of (b) elemental C, (c) elemental N, (d) $\frac{1}{2}$	89
	elemental O (e) elemental Fe and (i) elemental Ku ol g -C ₃ N ₄ /Fe ₃ O ₄ / p -KuNP	
6	Figure S3 Powder XRD patterns of α_{-} C ₂ N, paposheet α_{-} C ₂ N./Fe ₂ O ₂ NP and α_{-}	\$10
0	$C_2N_4/Fe_2O_4/n_RuNP$ nanocomposites	510
7	Figure S4. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of	S11
,	g-C ₃ N ₄ , g -C ₃ N ₄ /Fe ₃ O ₄ NP and g -C ₃ N ₄ /Fe ₃ O ₄ / p -RuNP nanocomposites.	011
8	Figure S5. (a) UV-Vis DRS spectra and (b) Tauc plot of $g-C_3N_4$, $g-C_3N_4/Fe_3O_4NP$ at	S12
	g-C ₃ N ₄ /Fe ₃ O ₄ /p-RuNP.	
9	Figure S6. Photocatalytic degradation of aniline (100 mg/L) by <i>g</i> -C ₃ N ₄ /Fe ₃ O ₄ / <i>p</i> -	S13
	RuNP at (a) different pH (b) with varying ruthenium concentration and (c) varying	
	aniline concentration after 24 h under LED.	
10	Figure S7. UV-Vis spectra and HPLC of aromatic amines (100 mg/L) and after	S14
	degradation using visible light at pH 7.0 in presence of $g-C_3N_4/Fe_3O_4/p-RuNP$	
11	nanocatalyst (80 mg/L).	015
11	Figure S8. Photograph of CR dye of varying concentration (a) before and (b) after the stades indexing (1b) by $z \in \mathbb{N}$ ($z \in \mathbb{N}$, $z \in \mathbb{N}$).	815
	after photodegradation (In) by $g-C_3N_4/Fe_3O_4/p$ -KuNP nanocomposite and (C) the corresponding LIV Vis spectra	
12	Figure S9 LIV-Vis spectra of degradation of various azo dves (5 mg/L) under LED	\$16
12	in presence of g -C ₂ N ₄ /Fe ₂ O ₄ / p -RuNP panocatalyst (80 mg/L)	510
13	Figure S10. HPLC of azo-dves (5 mg/L) after and before the degradation using	S17
_	visible light at pH 7.0 in presence of g -C ₃ N ₄ /Fe ₃ O ₄ / p -RuNP (80 mg/L) nanocatalyst.	
14	Figure S11. FTIR spectra of CR, g-C ₃ N ₄ /Fe ₃ O ₄ /p-RuNP nanocatalyst before and	S18
	after photo-degradation of CR and the solution after complete degradation of CR.	
15	Figure S12. (a, c, e and g) UV-Vis spectra of azo dyes before (i), after(ii)	S19
	reduction and after photo-degradation (iii); (b, d, f and h) HPLC of aromatic	
	amines of reduced dyes (200 mg/L) after and before degradation using visible light	
	at pH 7.0 in presence of g -C ₃ N ₄ /Fe ₃ O ₄ / p -RuNP nanocatalyst (80 mg/L).	~~~
16	Figure S13. Reusability of g -C ₃ N ₄ /Fe ₃ O ₄ / p -RuNP nanocatalyst towards aniline	S20
17	(100 mg/L) degradation under visible (LED) light.	001
17	Figure S14. (a) UV-Vis spectra of CR after treatment of $g-C_3N_4/Fe_3O_4/p-RuNP$	821
10	nanocataryst in the presence of different radical scavengers under LED light.	522
10	Kelerences	322

Chart S1. Chemical structure of aromatic amines used in this study.

NH₂

aniline

2-bromoaniline

3-chloro-4-fluoroaniline

OH. NH₂

2-aminophenol

benzene-1,2-diamine

<mark>SO</mark>₃H OH NH₂

4-amino-3hydroxynaphthalene-1sulfonic acid

Chart S2. Chemical structure of azo dyes used in this study.

Table TS1. Comparison between the present and other related nanocatalysts towards removal of aromatic amines.

Sl. No.	Title	Name of the enzyme/ chemical/catalyst	Aromatic amine/hydroxy compounds used	Initial conc. of Dye/Arom atic amines	Medium/ Buffer/te mp./pH	% removal
1	Chemical degradation of aromatic amines by Fenton's reagent ¹	Fenton's reagent [Fe(II) + H ₂ O ₂] (100-500 mg/L)	o-dianisidine,1-naphthylamine,2-naphthylamine,3,3'-dichlorobenzidine,p-anisidine,4-chloroaniline,2,4-iaminotoluene,o-tolidineaniline.and	0.0003 mM	рН 4.5-5.5	100
2	Removalofaromaticaminesanddecolourisationofazodyebathsbyelectrochemicaltreatment²	Electrochemical treatment 20 g of diatomaceous earth (90% SiO ₂)	aniline, o-toluidine, 4- chloroaniline and 4- aminobiphenyl	300 mg/L Dye and 10mg/L Aromatic amines		90
3	Chemical coagulationand sonolysis for totalaromaticaminesremovalfromanaerobicallypre-treatedtextilewastewater:Acomparative study3	Chemical coagulation, sonolysis Magnesium chloride aided with aluminium chlorohydrate (1800 mg /L)	Azo dyes (CR, RB 5, Disperse blue 3) Aromatic amine: Benzidine, sulfonic acid	200 mg/L	рН 7.0	85 (AAs) 52 (Decolon ization of dyes)
4	Horseradish peroxidase for the removal of carcinogenic aromatic amines from water ⁴	Horseradish peroxidase (100U/L) and hydrogen peroxide(1M)	o-tolidine, and 2- naphthylamine; from Aldrich, 1-naphthylamine, 4- aminobiphenyl, pphenylazoaniline, aniline, p- toluidine	100mg/L	рН 5.0	99
5	Removal of direct azo dyes and aromatic amines from aqueous solutions using two - cyclodextrin-based polymers ⁵	b-Cyclodextrin (b-CD) (2.5 g/L)	benzidine, p-chloroaniline and - naphthalamine	0.001 mM	рН 7.0	>85
6	Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines ⁶	calix[4]arenes derivative (2.5 g/L)	Azo dyes and aromatic amines (benzidine, p-chloroaniline, - naphthalamine)	0.001 mM	рН 2.0	>90

7	A porous trimetallic Au@Pd@Ru nanoparticle system: synthesis, characterisation and efficient dye degradation and removal ⁷	Porous Au@Pd@Ru Dolochar(150g/L)	Benzedine,benzidine, 4- aminophenol and 3,4 dimethoxyaniline	Dye and Aromatic amines= 1mM	pH=7.0	>90
8	A Combined Process for the Degradation of Azo- Dyes and Efficient Removal of Aromatic Amines Using Porous Silicon Supported Porous Ruthenium Nanocatalyst ⁸	Porous silicon@ porous ruthenium(8 mL in 1 L) and $H_2O_2(1M)$ (amount of Ru \approx 3.39 ppm)	Azo dyes and aromatic amines	Dye and Aromatic amines= 1mM	pH=5.0	46-99
9	A magnetically separable and recyclable porous Ruthenium nanocatalyst for the photocatalytic degradation of water- soluble aromatic amines and azo- dyes ^{Present Work}	80 mg/L 100 W, visible LED light (amount of Ru ≈ 3.44 ppm)	Azo dyes and aromatic amines	Dye(200mg /L) Aromatic amines (100- 200mg/L)	рН 7.0	The percenta ge varies from 67- 99 And the catalyst is recyclabl e several times

Table TS2. Catalytic reduction of azo dyes in presence of g-C₃N₄/Fe₃O₄/p-RuNP nanocomposites and NaBH₄.

Sr.	Name of the	Concentration	Catalyst	Time of	Removal efficiency
No	dye/amine		(per 10 mL)	reaction	
1	CR	5 mg/L	200 μL	1 h	100 %
2	СВ	5 mg/L	200 μL	1 h	100 %
3	EB	5 mg/L	200 μL	18 h	100%
4	RR-120	5 mg/L	200 μL	2 h	98%

Figure S1. FE-SEM images of (a) g-C₃N₄ nanosheet, (b) g-C₃N₄/Fe₃O₄NP and (c) g-C₃N₄/Fe₃O₄/p-RuNP nanocomposites and (d-f) their corresponding EDS spectra, respectively.

Figure S2. SEM image (a) and mapping of (b) elemental C, (c) elemental N, (d) elemental O (e) elemental Fe and (f) elemental Ru of g-C₃N₄/Fe₃O₄/p-RuNP nanocomposite.

Figure S3. Powder XRD patterns of g-C₃N₄ nanosheet, g-C₃N₄/Fe₃O₄NP and g-C₃N₄/Fe₃O₄/p-RuNP nanocomposites.

Figure S4. (a) N₂ adsorption-desorption isotherms and (b) pore size distribution of g-C₃N₄, g-C₃N₄/Fe₃O₄/P and g-C₃N₄/Fe₃O₄/P-RuNP nanocomposites.

Fig. S5. (a) UV-Vis DRS spectra and (b) Tauc plot of g-C₃N₄, g-C₃N₄/Fe₃O₄NP and g-C₃N₄/Fe₃O₄/p-RuNP.

Figure S6. Photocatalytic degradation of aniline (100 mg/L) by g-C₃N₄/Fe₃O₄/p-RuNP at (a) different pH (b) with varying ruthenium concentration and (c) varying aniline concentration after 24 h under LED.

* catalysts were taken 80 mg containing 3.44 ppm of Ru^0 ; The catalysts **A**, **B** and **C** were prepared by taking 5 mM, 10 mM and 20 mM RuCl₃. nH₂O.

Figure S7. UV-Vis spectra and HPLC of aromatic amines (100 mg/L) and after degradation using visible light at pH 7.0 in presence of g-C₃N₄/Fe₃O₄/p-RuNP nanocatalyst (80 mg/L).

Figure S8. Photograph of CR dye of varying concentration (a) before and (b) after photodegradation (12 h) by g-C₃N₄/Fe₃O₄/p-RuNP nanocomposite and (c) the corresponding UV-Vis spectra.

Figure S9. UV-Vis spectra of degradation of various azo dyes (5 mg/L) under LED in presence of g-C₃N₄/Fe₃O₄/p-RuNP nanocatalyst (80 mg/L).

Figure S10. HPLC of azo-dyes (5 mg/L) after and before the degradation using visible light at pH 7.0 in presence of g-C₃N₄/Fe₃O₄/p-RuNP (80 mg/L) nanocatalyst.

Figure S11. FTIR spectra of CR, g-C₃N₄/Fe₃O₄/p-RuNP nanocatalyst before and after photodegradation of CR and the solution after complete degradation of CR.

Figure S12. (a, c, e and g) UV-Vis spectra of azo dyes before (i), after(ii) reduction and after photo-degradation (iii); (b, d, f and h) HPLC of aromatic amines of reduced dyes (200 mg/L) after and before degradation using visible light at pH 7.0 in presence of g-C₃N₄/Fe₃O₄/p-RuNP nanocatalyst (80 mg/L).

Figure S13. Reusability of g-C₃N₄/Fe₃O₄/p-RuNP nanocatalyst towards aniline (100 mg/L) degradation under visible (LED) light.

Figure S14. (a) UV-Vis spectra of congo red (CR) after treatment of g-C₃N₄/Fe₃O₄/p-RuNP nanocatalyst in the presence of different radical scavengers under LED light.

References:

- 1 I. Casero, D. Sicilia, S. Rubio and D. Pérez-Bendito, *Water Res.*, 1997, **31**, 1985–1995.
- 2 V. López-Grimau, M. Riera-Torres, M. López-Mesas and C. Gutiérrez-Bouzán, *Color. Technol.*, 2013, **129**, 267–273.
- 3 A. Kumar Verma, P. Bhunia, A. K. Verma and R. R. Dash, *Adv. Environ. Res.*, 2014, **3**, 293–306.
- 4 A. M. Klibanov and E. D. Morris, *Enzyme Microb. Technol.*, 1981, **3**, 119–122.
- 5 E. Yilmaz, S. Memon and M. Yilmaz, J. Hazard. Mater., 2010, 174, 592–597.
- 6 E. Akceylan, M. Bahadir and M. Yilmaz, J. Hazard. Mater., 2009, 162, 960–966.
- 7 A. Sahoo, S. K. Tripathy, N. Dehury and S. Patra, *J. Mater. Chem. A*, 2015, **3**, 19376–19383.
- 8 A. Sahoo and S. Patra, *ACS Appl. Nano Mater.*, 2018, **1**, 5169–5178.