Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships
 between their chemical structures and antibacterial activity

W. Tejchman, B. Orwat*, I. Korona-Głowniak, A. Barbasz, I. Kownacki, G. Latacz, J. Handzlik, E. Żesławska, A. Malm

Electronic Supplementary Information

Syuhetic procedures and analytical Trable of contents S2
${ }^{1} H$ and ${ }^{13} \mathrm{C}$ NMR spectra. Sll
IR spectra S34
GC- and DEP-LRMS spectra. S39
ESI-HRMS spectra. S42
$M I C$ \& $M B C$ S52
Cytotoxicity tests S53
Membrane permeability test results S54

Synthetic procedures and analytical data

1,4-dibromonaphthalene

A solution of naphthalene $(8.97 \mathrm{~g}, 70.0 \mathrm{mmol})$ in 70 mL of DCM in round-bottom reactor was vigorously stirred and cooled to $-15^{\circ} \mathrm{C}$ in a cryostat. Next, bromine ($33.6 \mathrm{~g}, 10.77 \mathrm{~mL}, 208.0 \mathrm{mmol}$) was added dropwise not to overcome $-10^{\circ} \mathrm{C}$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 24 h . Then, reaction progress was analyzed by GC-MS technique, resulting in 73% of desired product among other bromonaphthalenes, based on chromatogram integration. The excess of bromine was quenched with sodium thiosulfate and sodium hydroxide aqueous solution. The organic layer was washed 3 times with water, dried with anhydrous magnesium sulfate and filtered. All volatiles were removed under reduced pressure, the residue was adsorbed on celite and loaded into a Biotage samplet. The product purified by column chromatography using hexanes as eluent. The fractions containing over 90% of the desired product were collected and concentrated. The residue was recrystallized form hexanes giving pure product as colorless needles $(8.4 \mathrm{~g}, 29.4 \mathrm{mmol})$. Yield: 42.0%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.08,130.20,128.31,127.92,122.71$.
MS (GC-LRMS): 288.0 (41.1%), 286.0 (84.4%), 283.9 (45.8%), 207.1 (20.0%), 205.0 (20.4%), 126.0 (100.0%), 74.0 (23.4 \%), 63.0 (33.1%).
Elemental analysis calculated (\%) for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{2}$: C 42.00, H 2.11. Found: C 42.05, H 2.12.

4-bromo-1-naphthalenecarbaldehyde

A three-necked 100 mL round-bottom flask equipped with thermometer, gas inlet and septum was loaded with 1,4dibromonaphthalene ($2.0 \mathrm{~g}, 6.99 \mathrm{mmol}$). The reaction set was evacuated and backfilled with argon three times. Next, 40 mL of anhydrous THF was added and the formed solution was cooled to $-80^{\circ} \mathrm{C}$ in dry ice - acetone bath. Subsequently, n-butyllithium (1.6 M in hexanes, $4.37 \mathrm{~mL}, 6.99 \mathrm{mmol}$) was added dropwise not to exceed $-70^{\circ} \mathrm{C}$. After addition complete, the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . Next, DMF $(0.562 \mathrm{~g}, 0.596 \mathrm{~mL}, 7.69 \mathrm{mmol})$ was dropwise added not to exceed $-70^{\circ} \mathrm{C}$. After addition, the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 0.5 h , left to reach room temperature slowly and stirred further for 3 h . After reaction was complete, the volume of the mixture was reduced to approx. $1 / 5$ under reduced pressure. The residue was dissolved in 20 mL of ethyl acetate and washed three times with 50 mL of water. The organic layer was evaporated to dryness, the residue was adsorbed on celite and loaded into a Biotage samplet. The product was purified by column chromatography with a gradient elution from 100% hexanes to 20% ethyl acetate : 80% hexanes. Fractions containing the product were collected and concentrated under reduced pressure. The residue was recrystallized from hexanes giving pure product as colorless crystals. Yield: 54%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 9.32-9.23(\mathrm{~m}, 1 \mathrm{H}), 8.41-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.65(\mathrm{~m}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.79,136.26,132.31,131.60,131.49,131.08,129.95,129.51,128.44,127.89,125.28$.
MS (GC-LRMS): 236.0 (32.1%), 234.0 (26.9%), 235.0 (20.6%), 155.0 (20.0%), 127.0 (77.5%), 126.0 (100.0%), 75.1 (22.3 \%), 74.1 (22.3%), 63.1 (25.5%).

Elemental analysis calculated (\%) for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}$: C 56.20, H 3.00. Found: C 56.27, H 3.01.

10-bromo-9-anthracenecarbaldehyde

9-anthracenecarbaldehyde ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}$) was loaded to a round-bottom flask and dissolved in 30 mL of DCM. Subsequently, solution of bromine $(0.759 \mathrm{~g}, 0.243 \mathrm{~mL}, 4.7 \mathrm{mmol})$ was added under stirring. The formed mixture was refluxed to the disappearance of bromine vapors (approx. 2 h). At this stage the reaction mixture was analyzed by GC-MS technique and if substrate was present, the additional amount of bromine was added (calculated with $1: 1$ molar ratio to the residual substrate which amount was estimated on the basis of chromatogram integration) and the mixture was refluxed once again to the bromine

Synthetic procedures and analytical data

vapors disappearance. After reaction complete, the solvent was evaporated under reduced pressure. The residual was adsorbed on celite and loaded into a Biotage samplet. The product was purified by column chromatography, starting with 10% DCM : 90 \% hexanes elution to remove 9,10-dibromoanthracene side-product and then eluent composition was gradient changed to 70% DCM : 30% hexanes to elute the product. The fractions containing the product were concentrated under reduced pressure and the residue was recrystallized from hexane giving the product as yellow needles ($0.85 \mathrm{~g}, 2.98 \mathrm{mmol}$). Yield: 63%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.42(\mathrm{~s}, 1 \mathrm{H}), 8.88-8.77(\mathrm{~m}, 2 \mathrm{H}), 8.66-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{ddt}, J=10.2,6.6,3.4 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.33,131.95,131.88,130.29,129.08,128.95,127.46,125.68,123.90$.
MS (GC-LRMS): 286.1 (32.5 \%), 284.1 (33.2 \%), 205.2 (36.2 \%), 177.2 (57.8%), 176.1 (100.0%), 175.1 (20.8%), 150.1 (31.2 \%), 88.2 (42.1%).

Elemental analysis calculated (\%) for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrO}: \mathrm{C} 63.18$, H 3.18. Found: C 63.25, H 3.20.

4-(diphenylamino)phenylboronic acid

A three-necked 100 mL round-bottom flask equipped with thermometer, gas inlet and septum was loaded with 4-bromo- N, N diphenylaniline ($8.0 \mathrm{~g}, 24.68 \mathrm{mmol}$). The reaction set was evacuated and backfilled with argon three times. Next, 40 mL of anhydrous THF was added and the formed solution was cooled to $-80^{\circ} \mathrm{C}$ in dry ice - acetone bath. Subsequently, n-butyllithium (1.6 M in hexanes, $18.5 \mathrm{~mL}, 29.6 \mathrm{mmol}$) was added dropwise not to exceed $-70^{\circ} \mathrm{C}$. After addition complete, the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . Next, the mixture was cooled to $-90^{\circ} \mathrm{C}$ and trimethyl borate ($3.11 \mathrm{~g}, 3.33 \mathrm{~mL}, 29.6 \mathrm{mmol}$) was added in a one shot. After addition, the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 2 h and then left to reach room temperature overnight. The volume of the mixture was reduced to approx. $1 / 3$ under reduced pressure and acidified to $\mathrm{pH}=5-6$ with 5% aqueous HCl . The product was extracted with 100 mL of DCM. The organic phase was washed 3 times with 50 mL of water and dried with anhydrous sodium sulfate and filtered. The resulting solution was concentrated under reduced pressure and the residue was washed with hexanes. The product was obtained as a white powder ($5.5 \mathrm{~g}, 19.02 \mathrm{mmol}$). Yield: 77%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.08-6.96(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz , DMSO- d_{6}) $\delta 149.08,147.09,135.55,129.68,124.51$, 123.47, 121.37.
MS (ESI-HRMS): calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BNO}_{2}\right]^{+}$(monomethyl ester) 304.1507, measured 304.1530 (error 7.6 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{18} \mathrm{H}_{168} \mathrm{NO}_{2}$: C 74.77, H 5.58, N 4.84. Found: C 74.80, H 5.60, N 4.83.

General procedure for the synthesis of 1a, 1b and 1c

1a, 1b, 1c
A 100 mL Schlenk flask was loaded with 4-(diphenylamino)phenylboronic acid, aryl bromoaldehyde and dichlorobis(triphenylophosphine)palladium(II). Subsequently, the flask was evacuated and backfilled with argon three times. Next, toluene, ethanol and deoxygenated aqueous potassium carbonate solution was added. The reaction mixture was vigorously stirred at $90^{\circ} \mathrm{C}$ for 6 h . After complete consumption of bromoaldehyde confirmed by GC-MS, the volume of the organic phase was almost completely reduced under reduced pressure. Then, 20 mL of DCM was added and water phase was removed. The organic phase was washed three times with 50 mL of water and evaporated to dryness under reduced pressure. The residue was adsorbed on celite and loaded into a Biotage samplet. The product was purified by column chromatography using gradient elution from 100% hexanes to 60% DCM : 40% hexanes. The fractions containing desired product were collected and concentrated under reduced pressure. The residue was recrystallized by slow evaporation from DCM : hexanes and subsequently washed twice with pentane.

4'-(diphenylamino)-[1,1'-biphenyl]-4-carbaldehyde (1a)

1a
The product was synthesized according to the general procedure, using the following substances: 4(diphenylamino)phenylboronic acid $\quad\left(\begin{array}{lllllll}1.272 & \mathrm{~g}, & 4.40 & \mathrm{mmol})\end{array}\right.$, 4-bromobenzaldehyde $\quad\left(\begin{array}{llll}0.74 & \mathrm{~g}, & 4.0 & \mathrm{mmol}) \text {, }\end{array}\right.$ dichlorobis(triphenylophosphine)palladium(II) $(28.0 \mathrm{mg}, 0.04 \mathrm{mmol}$), 2 M potassium carbonate aqueous solution (11.99 mL , $23.96 \mathrm{mmol}), 23 \mathrm{~mL}$ of toluene 7.6 mL of ethanol. The product was obtained as yellow needles ($1.36 \mathrm{~g}, 3.90 \mathrm{mmol}$). Yield: 90 \%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 192.20,149.00,147.93$, 146.97, 135.40, 133.30, 130.72, 129.95, 128.54, 127.39, 125.45, 124.05, 123.57.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): 1690 (C=O).
MS (DEP-LRMS): 350.3 (28.0%), 349.2 (100.0%).
MS (ESI-HRMS): calculated for [$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}^{+} 350.1539$, measured 350.1565 (error 7.4 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}$: C 85.93, H 5.48, N 4.01. Found: C 85.98, H 5.49, N 4.00.

4-(4-(diphenylamino)phenyl)-1-naphthalenecarbaldehyde (1b)

1b
The product was synthesized according to the general procedure, using the following substances: 4(diphenylamino) phenylboronic acid ($1.178 \mathrm{~g}, 4.08 \mathrm{mmol}$), 4-bromo-1-naphthalenecarbaldehyde ($0.871 \mathrm{~g}, 3.71 \mathrm{mmol}$), dichlorobis(triphenylophosphine)palladium(II) $(26.0 \mathrm{mg}, 0.037 \mathrm{mmol}), 2 \mathrm{M}$ potassium carbonate aqueous solution (11.12 mL , $23.96 \mathrm{mmol}), 22 \mathrm{~mL}$ of toluene 7 mL of ethanol. The product was obtained as yellow powder ($1.05 \mathrm{~g}, 2.63 \mathrm{mmol}$). Yield: 71%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 193.74,148.51,148.11,147.70,136.88,133.82,132.56,131.73,131.30,130.85,129.95,129.25$, 127.40, 127.36, 126.60, 125.48, 125.37, 123.92, 123.28.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): 1680 (C=O).
MS (DEP-LRMS): 400.3 (31.4%), 399.3 (100%).
MS (ESI-HRMS): calculated for [$\left.\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}\right]^{+} 400.1696$, measured 400.1728 (error 8.0 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}$: C 87.19, H 5.30, N 3.51. Found: C 87.25, H 5.32, N 3.49.

10-(4-(diphenylamino)phenyl)anthracene-9-carbaldehyde (1c)

$1 c$
The product was synthesized according to the general procedure, using the following substances: 4(diphenylamino)phenylboronic acid ($0.829 \mathrm{~g}, 2.87 \mathrm{mmol}$), 10-bromo-9-anthracenecarbaldehyde ($0.743 \mathrm{~g}, 2.61 \mathrm{mmol}$),

Synthetic procedures and analytical data

dichlorobis(triphenylophosphine)palladium(II) $(18.0 \mathrm{mg}, 0.026 \mathrm{mmol}), 2 \mathrm{M}$ potassium carbonate aqueous solution(7.82 mL , 15.63 mmol), 15 mL of toluene 5 mL of ethanol. The product was obtained as orange powder ($1.06 \mathrm{~g}, 2.36 \mathrm{mmol}$). Yield: 90%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 11.55(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 193.79,148.32,148.20,146.06,132.20,132.09,132.01,130.68,129.98,129.08,128.67,125.98$, $125.53,125.36,124.00,123.90,123.29$.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): $1664(\mathrm{C}=\mathrm{O})$.
MS (DEP-LRMS): 450.3 (36.2 \%), 449.3 (100.0%).
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}\right]^{+} 450.1852$, measured 400.1876 (error 5.3 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}$: C 88.17, H 5.16, N 3.12. Found: C 88.23, H 5.18, N 3.10 .

Rhodanine (2a)

A solution of chloroacetic acid ($23.62 \mathrm{~g}, 0.25 \mathrm{~mol}$) and ammonium thiocyanate ($38.06 \mathrm{~g}, 0.50 \mathrm{~mol}$) in 150 mL of water was heated for 20 minutes under reflux. After cooling down, a precipitate was formed. The crude product was filtered and recrystallized from water. The product was obtained as a yellowish powder ($14.96 \mathrm{~g}, 0.113 \mathrm{~mol})$, yield: 45%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.14$ (s, 1H), 4.26 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 205.43,176.81,39.42$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NOS}_{2}\right]^{-} 131.9583$, measured 131.9572 (error 8.3 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NOS}_{2}$: C 27.06, H 2.27, N 10.52, S 48.14. Found: C 27.09, H 2.28, N 10.55, S 48.16.

Rhodanine-3-acetic acid (2b)

A solution of potassium hydroxide $(28.00 \mathrm{~g}, 0.5 \mathrm{~mol})$ in 100 mL of water was added to the suspension of aminoethanoic acid $(18.75 \mathrm{~g}, 0.25 \mathrm{~mol})$. The resulting solution was cooled to $5^{\circ} \mathrm{C}$ and carbon disulfide ($19.03 \mathrm{~g}, 0.25 \mathrm{~mol}$) was added. The content of the flask was mixed at $5^{\circ} \mathrm{C}$ for 6 h . The cooling bath was removed and mixing was continued at room temperature for 20 h . Then, a solution of chloroacetic acid $(23.62 \mathrm{~g}, 0.25 \mathrm{~mol})$ in 100 mL of water was added. The reaction mixture was stirred for 8 h at the temperature below $15^{\circ} \mathrm{C}$. Next, a mixture of 150 mL concentrated hydrochloric acid and 200 mL of water was added slowly. The resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 25 min . After cooling down, a precipitate was formed, which was next filtered and recrystallized from water. The product was obtained as a white crystalline solid ($21.49 \mathrm{~g}, 0.275 \mathrm{~mol}$), yield: 55%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 4.55$ ($\mathrm{s}, 2 \mathrm{H}$), 4.40 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 202.96,173.88,167.47,44.90,36.08$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}_{2}\right]^{-1} 189.9638$, measured 189.9625 (error 6.8 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOS}_{2}$: C 31.41, H 2.64, N 7.33, S 33.53. Found: C 31.47, H 2.65, N 7.35, S 33.60.

1-acetyl-2-thiohydantoin (3a)

A flask containing a mixture of aminoethanoic acid ($37.5 \mathrm{~g}, 0.5 \mathrm{~mol}$), ammonium thiocyanate ($38.06 \mathrm{~g}, 0.5 \mathrm{~mol}$), 150 mL of acetic anhydride and 15 mL of acetic acid was heated in a water bath at $110^{\circ} \mathrm{C}$ for 30 minutes under reflux. Next, the flask was

Synthetic procedures and analytical data

cooled to $60^{\circ} \mathrm{C}$ and heated again at $100^{\circ} \mathrm{C}$ for 15 minutes. Then, the reaction mixture was poured into a beaker containing 1000 mL of cold water. The resulting precipitate was filtered and recrystallized from acetic acid. The product was obtained as a brown crystalline solid ($55.3 \mathrm{~g}, 0.35 \mathrm{~mol}$), yield: 70%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.58$ (s, 1H), 4.39 (s, 2H), 2.67 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) δ 182.57, 170.46, 169.44, 52.26, 26.70, 26.67.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right]^{-} 157.0077$, measured 157.0052 (error 15.9 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C} 37.97$, H 3.82, N 17.71, S 20.27. Found: C 37.95, H 3.80, N 17.75, S 20.30.

2-thiohydantoin-3-acetic acid (3b)

3b

A solution of sodium hydroxide $(12.0 \mathrm{~g}, 0.3 \mathrm{~mol})$ was added to a well stirred suspension of aminoethanoic acid ($18.75 \mathrm{~g}, 0.25$ mol) in 20 mL of water. To the resulting solution carbon disulfide ($11.42 \mathrm{~g}, 0.15 \mathrm{~mol}$) was added under nitrogen atmosphere and the reaction mixture was refluxed for 8 h . After the heating was finished, the excess of carbon disulfide was evaporated on a rotary evaporator. Next, a mixture of 100 mL of concentrated hydrochloric acid and 200 mL of water was added. The resulting mixture was refluxed for 2 h . After cooling, a precipitate was formed, which was filtered and subsequently recrystallized from water. The product was obtained as a white crystalline solid ($39.15 \mathrm{~g}, 0.225 \mathrm{~mol}$), yield: 75%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.34$ ($\mathrm{s}, 1 \mathrm{H}$), 4.34 ($\mathrm{s}, 2 \mathrm{H}$), 4.23 (d, $J=1.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 182.87,172.27,168.44,48.64,41.47$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{-}\right.$173.0026, measured 173.0008 (error 10.4 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$: C 33.73, H 4.45, N 16.86, S 12.86. Found: C 33.75, H 4.47, N 16.90, S 12.88.

General procedure for the synthesis of $\mathbf{4 a - 7 c}$

4-bromo-1-benzaldehyde ($0.1 \mathrm{~g}, 0.286 \mathrm{mmol}$), 4-bromo-1-naphthalenecarbaldehyde ($0.114 \mathrm{~g}, 0.286 \mathrm{mmol}$) or 10-bromo-9anthracenecarbaldehyde $(0.129 \mathrm{~g}, 0.286 \mathrm{mmol})$, respective rhodanine $(0.046 \mathrm{~g}, 0.343 \mathrm{mmol})$, rhodanine-3-acetic acid (0.066 $\mathrm{g}, 0.343 \mathrm{mmol}$), 1-acetyl-2-thiohydantoin ($0.054 \mathrm{~g}, 0.343 \mathrm{mmol}$) or 2-thiohydantoin-3-acetic acid ($0.06 \mathrm{~g}, 0.343 \mathrm{mmol}$) and ammonium acetate ($44 \mathrm{mg}, 0.57 \mathrm{mmol}$) were added to a CEM microwave vial. Subsequently, 2 mL of AA was added and the vessel was closed with a cap. The mixture was heated with maximum power 200 W at $180^{\circ} \mathrm{C}$ for 5-7 min (5 min for 4-bromo-1-benzaldehyde, 6 min for 4-bromo-1-naphthalenecarbaldehyde and 7 min for 10-bromo- $\mathbf{9}$-anthracenecarbaldehyde). During heating the color of the mixtures turned red very quickly and became homogenous. After cooling back to room temperature the precipitate was formed (some products tended to form supercooled solutions, in that case precipitation was initiated by ultrasonification). The solid was centrifuged and the supernatant was sucked off with a syringe. The solid was washed with 1 mL of AA and 4 times with 4 mL portions of water in the same manner. The obtained product was dried in an oven at $110^{\circ} \mathrm{C}$ overnight. In some cases the product was purified by subsequent recrystallization from 2-propanol.

(Z)-5-((4'-(diphenylamino)-(1,1'-biphenyl)-4-yl)methylene)-2-thioxothiazolidin-4-one (4a)

Synthetic procedures and analytical data

4a
Brick-red crystalline solid ($128 \mathrm{mg}, 0.276 \mathrm{mmol}$). Yield: 96%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14-6.95(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 195.64$, 169.62, 147.75, 146.89, 141.66, 132.02, 131.50, 131.42, 129.84, 127.94, 126.90, 124.86, 124.72, 123.82, 122.64.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): $1689(\mathrm{C}=\mathrm{O}), 1068(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}_{2}\right]^{-} 463.0944$, measured 463.0947 (error 0.6 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}_{2}$: C 72.39, H 4.34, N 6.03, S 13.80. Found: C 72.37, H 4.34, N 6.05, S 13.79.
(Z)-5-((4-(4-(diphenylamino)phenyl)naphthalen-1-yl)methylene)-2-thioxothiazolidin-4-one (4b)

4b
Dark-brown crystalline solid ($139 \mathrm{mg}, 0.270 \mathrm{mmol}$). Yield: 94%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.45-$ 7.30 (m, 6H), $7.18-7.04$ (m, 8H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 196.17,168.97$, 147.16, 146.97, 142.33, 132.77, 131.66, 131.19, 130.85, 129.75, 129.34, $128.60,128.17,127.52,127.17,126.68,126.63,126.57,124.58,123.93,123.60,122.26$.

IR (ATR, $v_{\max }, \mathrm{cm}^{-1}$): $1683(\mathrm{C}=\mathrm{O}), 1073(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}_{2}\right]^{-} 513.1101$, measured 513.1103 (error 0.4 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}_{2}$: C 74.68, H 4.31, N 5.44, S 12.46. Found: C 74.65, H 4.29, N 5.45, S 12.44.
(Z)-5-((10-(4-(diphenylamino)phenyl)anthracen-9-yl)methylene)-2-thioxothiazolidin-4-one (4c)

4c
Orange powder ($145 \mathrm{mg}, 0.257 \mathrm{mmol}$). Yield: 90%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.58-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 147.24,132.02,129.97,129.56,127.88,127.42,127.04,126.27,125.58,124.76,124.70$, 123.78, 122.36.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): $1734(\mathrm{C}=\mathrm{O}), 1068(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS}_{2}\right]^{-} 563.1257$, measured 563.1259 (error 0.4 pm).
Elemental analysis calculated (\%) for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}_{2}$: C 76.57, H 4.28, N 4.96, S 11.35. Found: C 76.60, H 4.29, N 4.95, S 11.35.

(Z)-2-(5-((4'-(diphenylamino)-(1,1'-biphenyl)-4-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic

 acid (5a)

5a
Red powder ($140 \mathrm{mg}, 0.268 \mathrm{mmol}$). Yield: 94%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=8.5,6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.15-7.04(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO) $\delta 193.21,167.49,166.56,147.89,146.88,142.17,133.79,131.89,131.76,131.28,129.87,128.01$, 127.01, 124.80, 123.90, 122.56, 121.12, 45.19.

IR (ATR, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 1722(\mathrm{C}=\mathrm{O}), 1701(\mathrm{C}=\mathrm{O}), 1056(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\right]^{-} 521.0999$, measured 521.0994 (error 1.0 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$: C 68.94, H 4.24, N 5.36, S 12.27. Found: C 68.99, H 4.23, N 5.34, S 12.28.
(Z)-2-(5-((4-(4-(diphenylamino)phenyl)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3yl)acetic acid (5b)

5b
Orange crystalline solid ($148 \mathrm{mg}, 0.258 \mathrm{mmol}$). Yield: 90%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ $-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.04(\mathrm{~m}, 8 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 193.84,167.51,166.03,147.34,147.06,142.95,132.76,131.79,131.32,130.97,130.73$, $129.89,129.21,127.82,127.41,127.18,126.79,126.73,124.95,124.73,124.09,123.78,122.29,45.22$.
IR (ATR, $\left.v_{\text {max }}, \mathrm{cm}^{-1}\right): 1725(\mathrm{C}=\mathrm{O}), 1708(\mathrm{C}=\mathrm{O}), 1062(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\right]^{-571.1156, ~ m e a s u r e d ~} 571.1137$ (error 3.3 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$: C 71.31, H 4.22, N 4.89, S 11.20. Found: C 71.35, H 4.24, N 4.90, S 11.22.
(Z)-2-(5-((10-(4-(diphenylamino)phenyl)anthracen-9-yl)methylene)-4-oxo-2-thioxothiazolidin-3yl)acetic acid (5c)

5c
Red crystalline solid ($159 \mathrm{mg}, 0.255 \mathrm{mmol}$). Yield: 89%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.07(\mathrm{~m}, 8 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H})$.

Synthetic procedures and analytical data

${ }^{13}$ C NMR (151 MHz, DMSO- d_{6}) $\delta 193.63,167.57,165.05,147.18,139.73,132.57,131.94,131.10,130.85,129.92,129.53$, $127.89,127.51,127.27,126.99,126.31,125.30,124.76,123.75,122.25,45.29$.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): $1727(\mathrm{C}=\mathrm{O}), 1713(\mathrm{C}=\mathrm{O}), 1056(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{38} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}\right]^{-} 621.1312$, measured 621.1289 (error 3.7 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$: C 73.29, H 4.21, N 4.50, S 10.30. Found: C 73.27, H 4.20, N 4.51, S 10.32.
(Z)-5-((4'-(diphenylamino)-(1,1'-biphenyl)-4-yl)methylene)-2-thioxoimidazolidin-4-one (6a)

6a
Orange crystalline solid ($92 \mathrm{mg}, 0.206 \mathrm{mmol}$). Yield: 72%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.38(\mathrm{~s}, 1 \mathrm{H}), 12.20(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.13-6.97$ (m, 8H), 6.51 (s, 1H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 179.17,166.05,147.45,147.05,140.32,132.81,131.06,129.88,127.83,127.61,126.46$, $124.59,123.73,123.05,111.63$.

IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): $1720(\mathrm{C}=\mathrm{O}), 1080(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for [$\left.\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{OS}\right]^{-} 446.1333$, measured 446.1321 (error 2.7 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$: C 75.14, H 4.73, N 9.39, S 7.16. Found: C 75.18, H 4.75, N 9.41, S 7.14.

(Z)-5-((4-(4-(diphenylamino)phenyl)naphthalen-1-yl)methylene)-2-thioxoimidazolidin-4-one (6b)

6b
Yellow crystalline solid ($122 \mathrm{mg}, 0.245 \mathrm{mmol}$). Yield: 86%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.34(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ -7.53 (m, 2H), 7.49 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.31$ (m, 6H), $7.17-7.05$ (m, 9H).
${ }^{13}$ C NMR (151 MHz, DMSO- d_{6}) $\delta 130.99$, 129.93, 124.64, 123.72.
IR (ATR, $v_{\max }, \mathrm{cm}^{-1}$): $1714(\mathrm{C}=\mathrm{O}), 1087(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for [$\left.\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{OS}\right]^{-} 496.1489$, measured 496.1465 (error 4.8 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS}$: C 77.24, H 4.66, N 8.44, S 6.44. Found: C 77.27, H 4.68, N 8.46, S 6.43.
(Z)-5-((10-(4-(diphenylamino)phenyl)anthracen-9-yl)methylene)-2-thioxoimidazolidin-4-one (6c)

6 c
The pure product was obtained after recrystallization from 2-propanol. Red crystalline solid ($116 \mathrm{mg}, 0.212 \mathrm{mmol}$). Yield: 74%

Synthetic procedures and analytical data

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.37(\mathrm{~s}, 1 \mathrm{H}), 11.67(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.46$ $(\mathrm{m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 179.13,164.64,147.15,146.88,137.76,133.63,131.86,131.51,129.79,129.64,129.08$, 127.09, 126.77, 126.18, 125.85, 125.68, 124.57, 123.54, 122.38, 108.17.

IR (ATR, $v_{\max }, \mathrm{cm}^{-1}$): $1742(\mathrm{C}=\mathrm{O}), 1099(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for [$\left.\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OS}\right]^{-} 546.1646$, measured 546.1629 (error 3.1 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{OS}$: C 78.95, H 4.60, N 7.67, S 5.85. Found: C 78.93, H 4.58, N 7.65, S 5.86.
(Z)-2-(5-((4'-(diphenylamino)-(1,1'-biphenyl)-4-yl)methylene)-4-oxo-2-thioxoimidazolidin-3yl)acetic acid (7a)

7a
Orange crystalline solid ($122 \mathrm{mg}, 0.241 \mathrm{mmol}$). Yield: 84%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.15-6.97(\mathrm{~m}, 8 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 178.26,168.37,163.78,147.49,147.00,140.67,132.65,131.27,130.76,129.84,127.84$, 126.47, 125.72, 124.60, 124.58, 123.73, 122.93, 113.61, 41.97.

IR (ATR, $v_{\max }, \mathrm{cm}^{-1}$): $1735(\mathrm{C}=\mathrm{O}), 1647(\mathrm{C}=\mathrm{O}), 1076(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{-} 504.1387$, measured 504.1383 (error 0.8 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C 71.27, H 4.59, N 8.31, S 6.34. Found: C 71.30, H 4.60, N 8.29, S 6.35.

(Z)-2-(5-((4-(4-(diphenylamino)phenyl)naphthalen-1-yl)methylene)-4-oxo-2-thioxoimidazolidin-3yl)acetic acid (7b)

7b
Yellow powder ($135 \mathrm{mg}, 0.243 \mathrm{mmol}$). Yield: 85%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 8 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz , DMSO) $\delta 178.48$, 168.44, 163.38, 147.15, 147.09, 141.08, 133.36, 131.75, 131.19, 130.94, 129.88, 128.57, $128.37,128.14,127.25,126.86,126.73,126.48,124.63,124.58,124.38,123.69,123.64,122.59,122.53,110.33,42.00$.
IR (ATR, $v_{\text {max }}, \mathrm{cm}^{-1}$): $1707(\mathrm{C}=\mathrm{O}), 1649(\mathrm{C}=\mathrm{O}), 1073(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{-} 554.1544$, measured 554.1527 (error 3.1 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C 73.49, H 4.54, N 7.56, S 5.77. Found: C 73.53, H 4.55, N 7.54, S 5.78.
(Z)-2-(5-((10-(4-(diphenylamino)phenyl)anthracen-9-yl)methylene)-4-oxo-2-thioxoimidazolidin-3yl)acetic acid (7c)

Synthetic procedures and analytical data

7c
The pure product was obtained after recrystallization from 2-propanol. Orange powder ($128 \mathrm{mg}, 0.211 \mathrm{mmol}$). Yield: 74%.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.09(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 178.29,172.10,168.35,162.43,147.16,146.93,138.11,131.85,131.81,131.42,129.81$, 129.66, 129.09, 127.15, 126.36, 125.76, 125.69, 124.61, 123.58, 122.36, 110.38, 41.85.

IR (ATR, $\nu_{\text {max }}, \mathrm{cm}^{-1}$): $1718(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{O}), 1075(\mathrm{C}=\mathrm{S})$.
MS (ESI-HRMS): calculated for $\left[\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{-} 604.1700$, measured 604.1692 (error 1.3 ppm).
Elemental analysis calculated (\%) for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C 75.35, H 4.49, N 6.94, S 5.29. Found: C 75.30, H 4.48, N 6.96, S 5.30.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 1S. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of 1,4-dibromonaphthalene.

Figure 2S. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of 1,4-dibromonaphthalene.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 3S. ${ }^{1} \mathrm{H} N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of 4-bromo-1-naphthalenecarbaldehyde.

$\begin{array}{llllllllllllllllll}139 & 138 & 137 & 136 & 135 & 134 & 133 & 132 & 131 & 130 & 129 & 128 & 127 & 126 & 125 & 124 & 123\end{array}$

Figure 4S. ${ }^{13} \mathrm{C} N M R\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of 4-bromo-1-naphthalenecarbaldehyde.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 5S. ${ }^{1} \mathrm{H} N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of 10-bromo-9-anthracenecarbaldehyde.

		1	1	1	1	1			1	1	1	1		1	1	7	1	1	1	1	1		
30	220	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10	0

Figure 6S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of 10-bromo-9-anthracenecarbaldehyde.

Figure 7S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of 4-(diphenylamino)phenylboronic acid.

Figure 8S. ${ }^{13} \mathrm{CNMR}$ (75 MHz, DMSO- $d_{6}, 298 \mathrm{~K}$) spectrum of 4-(diphenylamino)phenylboronic acid.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 9S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of 1 a .

Figure 10S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of 10-bromo-9-anthracenecarbaldehyde.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 11S. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CD $\left.\mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{1 b}$.

Figure 12S. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, C D_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{1 b}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 13S. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of 1 c .

Figure 14S. ${ }^{13} \mathrm{C} N M R\left(75 \mathrm{MHz}, C D_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of 1 c .

Figure 15S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{2 a}$.

Figure 16S. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{2 a}$.

Figure 17S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{2 b}$.

Figure 18S. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{2 b}$.

Figure 19S. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right)$ spectrum of $3 a$.

Figure 20S. ${ }^{13} \mathrm{CNMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right)$ spectrum of $3 a$.

Figure 21S. ${ }^{1} \mathrm{H} N \mathrm{NR}$ ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$, 298 K) spectrum of $\mathbf{3 b}$.

Figure 22S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$, 298 K) spectrum of $\mathbf{3 b}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$4 a$

Figure 23S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{4 a}$.

Figure 24S. ${ }^{13} \mathrm{C} N M R\left(75 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{4 a}$.

4b

Figure 25S. ${ }^{1} \mathrm{H} N M R\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{4 b}$.

Figure 26S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{4 b}$.

Figure 27S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{4 c}$.

Figure 28S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}$) spectrum of $4 c$.

Figure 29S. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}, 298 \mathrm{~K}\right)$ spectrum of 5 a.

Figure 30S. $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{DMSO-d} d_{6}, 298 \mathrm{~K}\right)$ spectrum of $5 a$.

Figure 31S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{5 b}$.

Figure 32S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $5 \boldsymbol{b}$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 33S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{-d_{6}}, 298 \mathrm{~K}$) spectrum of 5 c .

Figure 34S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}, 298 \mathrm{~K}$) spectrum of 5 c .

Figure 35S. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{6 a}$.

Figure 36S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{6 a}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 37S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{6 b}$.

Figure 38S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{6 b}$.

Figure 39S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{6 c}$.

Figure 40S. ${ }^{13} \mathrm{CNMR}$ ($75 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{6 c}$.

Figure 41S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $7 a$.

Figure 42S. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{7 a}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure 43S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{7 b}$.

Figure 44S. ${ }^{13} \mathrm{CNMR}$ ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}$) spectrum of $\mathbf{7 b}$.

Figure 45S. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}$) spectrum of 7 c .

Figure 46S. ${ }^{13} \mathrm{CNMR}$ (75 MHz, DMSO- $d_{6}, 298 \mathrm{~K}$) spectrum of 7c.

Figure 47S. FT-IR (ATR) spectrum of 1 a.

Figure 48S. FT-IR (ATR) spectrum of 1 b.

Figure 49S. FT-IR (ATR) spectrum of 1c.

Figure 50S. FT-IR (ATR) spectrum of $\mathbf{4 a}$.

Figure 51S. FT-IR (ATR) spectrum of $4 b$.

Figure 52S. FT-IR (ATR) spectrum of 4c.

Figure 53S. $F T-I R$ (ATR) spectrum of $5 a$.

Figure 54S. FT-IR (ATR) spectrum of 5 b.

Figure 55S. FT-IR (ATR) spectrum of 5 c.

Figure 56S. FT-IR (ATR) spectrum of $\mathbf{6 a}$.

Figure 57S. FT-IR (ATR) spectrum of $6 b$.

Figure 58S. FT-IR (ATR) spectrum of $6 \mathbf{c}$.

Figure 59S. FT-IR (ATR) spectrum of 7 .

Figure 60S. FT-IR (ATR) spectrum of $\mathbf{7 b}$.

Figure 61S. FT-IR (ATR) spectrum of 7c.

Figure 62S. EI-LRMS spectrum of 1,4-dibromonaphthalene.

Figure 63S. EI-LRMS spectrum of 4-bromo-1-naphthalenecarbaldehyde.

Figure 64S. EI-LRMS spectrum of 10-bromo-9-anthracenecarbaldehyde.

Figure 65S. DEP-LRMS spectrum of 1 a.

GC- and DEP-LRMS spectra

Figure 66S. DEP-LRMS spectrum of 1b.

Figure 67S. DEP-LRMS spectrum of 1c.

ESI-HRMS spectra

Figure 68S. ESI-HRMS spectrum of 4-(diphenylamino)phenylboronic acid, predicted (left) and measured (right).

Figure 69S. ESI-HRMS spectrum of 1a, predicted (left) and measured (right).

ESI-HRMS spectra

Figure 70S. ESI-HRMS spectrum of 1b, predicted (left) and measured (right).

Figure 71S. ESI-HRMS spectrum of 1c, predicted (left) and measured (right, normalized).

ESI-HRMS spectra

Figure 72S. ESI-HRMS spectrum of 2a, predicted (left) and measured (right).

Figure 73S. ESI-HRMS spectrum of $\mathbf{2 b}$, predicted (left) and measured (right).

ESI-HRMS spectra

Figure 74S. ESI-HRMS spectrum of 3a, predicted (left) and measured (right).

Figure 75S. ESI-HRMS spectrum of $\mathbf{3 b}$, predicted (left) and measured (right).

ESI-HRMS spectra

Figure 76S. ESI-HRMS spectrum of 4a, predicted (left) and measured (right).

Figure 77S. ESI-HRMS spectrum of 4b, predicted (left) and measured (right).

ESI-HRMS spectra

Figure 78S. ESI-HRMS spectrum of 4c, predicted (left) and measured (right).

Figure 79S. ESI-HRMS spectrum of 5a, predicted (left) and measured (right, normalized).

ESI-HRMS spectra

Figure 80S. ESI-HRMS spectrum of 5b, predicted (left) and measured (right, normalized).

Figure 81S. ESI-HRMS spectrum of 5c, predicted (left) and measured (right, normalized).

ESI-HRMS spectra

Figure 82S. ESI-HRMS spectrum of 6a, predicted (left) and measured (right).

Figure 83S. ESI-HRMS spectrum of 6b, predicted (left) and measured (right, normalized).

ESI-HRMS spectra

Figure 84S. ESI-HRMS spectrum of $6 \mathbf{c}$, predicted (left) and measured (right, normalized).

Figure 85S. ESI-HRMS spectrum of 7a, predicted (left) and measured (right).

ESI-HRMS spectra

Figure 86S. ESI-HRMS spectrum of 7b, predicted (left) and measured (right, normalized).

Figure 87S. ESI-HRMS spectrum of 7c, predicted (left) and measured (right).

MIC \& MBC

Table 1S. Activity of rhodanine and rhodanine-3-acetic acid derivatives against selected gram positive bacteria.

Compound	4a		4b		4c		5a		5b		5c	
Bacteria strain	$\begin{gathered} \text { MIC } \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \text { MIC } \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \text { MIC } \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \text { MIC } \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MIC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \text { MIC } \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$
S. aureus ATCC 25923	250	1000	500	>1000	>1000	>1000	3,9	31,3	1000	>1000	>1000	>1000
S. aureus ATCC 6538	500	>1000	500	>1000	>1000	>1000	3,9	7,8	1000	>1000	>1000	>1000
S. aureus ATCC 43300	250	>1000	1000	>1000	>1000	>1000	3,9	7,8	1000	>1000	>1000	>1000
S. epidermidis ATCC 12228	125	250	1000	>1000	>1000	>1000	0,98	7,8	500	1000	>1000	>1000
M. Iuteus ATCC 10240	31,1	500	250	>1000	>1000	>1000	0,98	31,3	31,3	62,5	125	125
B. subtilis ATCC 6633	1000	>1000	1000	>1000	>1000	>1000	1,95	1,95	500	1000	>1000	>1000
B. cereus ATCC 10876	1000	>1000	1000	>1000	>1000	>1000	7,8	31,3	1000	>1000	>1000	>1000
S. pyogenes ATCC 19615	1000	>1000	1000	>1000	>1000	>1000	15,6	500	1000	>1000	>1000	>1000
S. pneumoniae ATCC 49619	1000	>1000	1000	>1000	>1000	>1000	15,6	500	1000	>1000	>1000	>1000
S. mutans ATCC 25175	1000	>1000	1000	>1000	>1000	>1000	1000	>1000	1000	>1000	>1000	>1000

Table 2S. Activity of 2-thiohydantoin and 2-thiohydantoin-3-acetic acid derivatives against selected gram positive bacteria.

Compound	6a		6b		6 c		7a		7b		7c	
Bacteria strain	$\begin{gathered} \mathrm{MIC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \text { MIC } \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MIC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MIC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MIC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MIC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{MBC} \\ {[\mathrm{mg} / \mathrm{L}]} \end{gathered}$
S. aureus ATCC 25923	>1000	>1000	>1000	>1000	>1000	>1000	3,9	3,9	>1000	>1000	>1000	>1000
S. aureus ATCC 6538	>1000	>1000	>1000	>1000	>1000	>1000	1,95	3,9	>1000	>1000	>1000	>1000
S. aureus ATCC 43300	>1000	>1000	>1000	>1000	>1000	>1000	1,95	3,9	>1000	>1000	>1000	>1000
S. epidermidis ATCC 12228	>1000	>1000	>1000	>1000	>1000	>1000	1,95	3,9	>1000	>1000	>1000	>1000
M. Iuteus ATCC 10240	62,5	>1000	>1000	>1000	>1000	>1000	1,95	31,3	>1000	>1000	>1000	>1000
B. subtilis ATCC 6633	>1000	>1000	>1000	>1000	>1000	>1000	3,9	3,9	>1000	>1000	>1000	>1000
B. cereus ATCC 10876	>1000	>1000	>1000	>1000	>1000	>1000	125	250	>1000	>1000	>1000	>1000
S. pyogenes ATCC 19615	>1000	>1000	>1000	>1000	>1000	>1000	31,3	125	>1000	>1000	>1000	>1000
S. pneumoniae ATCC 49619	>1000	>1000	>1000	>1000	>1000	>1000	62,5	125	>1000	>1000	>1000	>1000
S. mutans ATCC 25175	>1000	>1000	>1000	>1000	>1000	>1000	62,5	>1000	>1000	>1000	>1000	>1000

Table 3S. Determined MIC values [mg/L] of ciprofloxacin and vancomycin for bacterial strains.

Microorganism	Vancomycin	Ciprofloxacin
S. aureus ATCC25923	0.98	0.49
S. aureus ATCC6538	0.49	0.24
S. aureus ATCC43300	1.96	0.24
S. epidermidis ATCC12228	0.98	0.49
M. luteus ATCC10240	0.12	0.98
B. subtilis ATCC6633	0.24	0.03
B. cereus ATCC10876	0.98	0.12
S. pyogenes ATCC19615	0.24	-
S. pneumoniae ATCC49619	0.24	-
S. mutans ATCC25175	0.98	-

Cytotoxicity tests

Table 4S. Determined average lethal dose (LD_{50}) for $\mathbf{2 4} \mathrm{h}$ incubation of human cell lines in the presence of compounds $\mathbf{4 a} \mathbf{- 7 c}$.

Compound	LD ${ }_{50}$ [$\mathrm{mg} / \mathrm{L} / 1 \times 10^{6}$ cells]		
	U-937	HUT-78	COLO-720L
4a	17.81	34.71	22.71
4b	23.63	41.02	28.83
4c	29.10	42.50	31.08
5a	18.46	38.48	16.50
5b	25.50	15.93	24.35
5c	21.93	17.92	24.16
6a	34.44	18.47	41.70
6b	22.17	22.31	20.63
6c	30.99	67.63	35.11
7 a	29.35	20.96	29.63
7b	29.70	63.42	28.11
7c	25.54	27.89	23.41

Membrane permeability test results

Figure 88S. HPLC chromatogram of reference donor well.

Figure 89S. HPLC chromatogram of reference acceptor well.

Figure 90S. HPLC chromatogram of 5 a test donor well.

Figure 91S. HPLC chromatogram of $\mathbf{5 a}$ test acceptor well.

Membrane permeability test results

Figure 92S. HPLC chromatogram of $\mathbf{5 b}$ test donor well .

Figure 93S. HPLC chromatogram of 5 b test acceptor well.

Figure 94S. HPLC chromatogram of 5c test donor well.

Figure 95S. HPLC chromatogram of 5c test acceptor well.

