Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid

Jian-Hua Qin,^a Ya-Dan Huang,^{a,b} Ming-Yu Shi,^a Hua-Rui Wang,^{*a} Min-Le Han,^a Xiao-Gang Yang,^{*a} Fei-Fei Li,^b and Lu-Fang Ma^{a,c}

^oCollege of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China, E-mail: yxg2233@126.com. ^bCollege of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, PR. China.

^cCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR. China.

Supporting Information

- Fig. S1 Schematic representation of the 4,8-connected topology (CaF₂).
- Fig. S2 PXRD patterns for simulated and experimental 1 sample soaked in aqueous solutions over the pH range from 2 to 6.
- Fig. S3 Thermogravimetric curve of 1.
- Fig. S4 Normalized excitation and emission spectra of H₄ptptc in solid state at room temperature.
- Fig. S5 Fluorescence spectra (a) and decay curve (b) of 1.
- Fig. S6 Phosphorescence spectra (a) and decay curve (b) of 1.
- Fig. S7 The emission spectra for 1 dispersed in different solvents at room temperature.
- Fig. S8-S20 Details of detecting of antibiotics of 1 in the aqueous phase.
- Fig. S21-S29 Details of detecting of nitroaromatic explosives of 1 in the aqueous phase.
- Fig. S30 Spectral overlap between normalized absorption spectra of selected antibiotics and the normalized emission spectra of 1 in water.
- **Fig. S31** Spectral overlap between normalized absorption spectra of selected nitroaromatics explosives and the normalized emission spectra of **1** in water.
- **Table S1.** Crystallographic data and experimental details for 1.
- Table S2. Selected bond lengths (Å) and angles (°) for 1.
- **Table S3.** Summary of quenching constants (K_{sv}) of **1** for sensing different analytes at room temperature.

Table S4. HOMO and LUMO energies calculated for the anlytes used at B3LYP/6-31G** level.

Fig. S1 Schematic representation of the 4,8-connected topology (CaF_2) (blue nodes for ptptc ligands and green nodes for $[Zn_3(CO_2)_8]$ clusters).

Fig. S2 PXRD patterns for simulated and experimental **1** sample soaked in aqueous solutions over the pH range from 2 to 6.

Fig. S3 Thermogravimetric curve of 1.

Fig. S4 Normalized excitation and emission spectra of H₄ptptc in solid state at room temperature.

(a)

(b)

Fig. S5 Fluorescence spectra (a) and decay curve (b) of 1.

(a)

Fig. S6 Phosphorescence spectra (a) and decay curve (b) of 1.

Fig. S7 The emission spectra for 1 dispersed in different solvents at room temperature.

Fig. S8 The fluorescent intensity for **1** dispersed in 0.1 mM aqueous solutions of the selected antibiotics at room temperature.

Fig. S9 Effect on the emission spectra of **1** dispersed in water upon incremental addition of NZF (inset: SV plots of NZF).

Fig. S10 Effect on the emission spectra of **1** dispersed in water upon incremental addition of DTZ (inset: SV plots of DTZ).

Fig. S11 Effect on the emission spectra of **1** dispersed in water upon incremental addition of NFT (inset: SV plots of NFT).

Fig. S12 Effect on the emission spectra of **1** dispersed in water upon incremental addition of FZD (inset: SV plots of FZD).

Fig. S13 Effect on the emission spectra of **1** dispersed in water upon incremental addition of ODZ (inset: SV plots of ODZ).

Fig. S14 Effect on the emission spectra of **1** dispersed in water upon incremental addition of RDZ (inset: SV plots of RDZ).

Fig. S15 Effect on the emission spectra of **1** dispersed in water upon incremental addition of CAP (inset: SV plots of CAP).

Fig. S16 Effect on the emission spectra of **1** dispersed in water upon incremental addition of SMZ (inset: SV plots of SMZ).

Fig. S17 Effect on the emission spectra of **1** dispersed in water upon incremental addition of MDZ (inset: SV plots of MDZ).

Fig. S18 Effect on the emission spectra of **1** dispersed in water upon incremental addition of SDZ (inset: SV plots of SDZ).

Fig. S19 Effect on the emission spectra of 1 dispersed in water upon incremental addition of PCL.

Fig. S20 Effect on the emission spectra of 1 dispersed in water upon incremental addition of FFC.

Fig. S21 The fluorescent intensity for **1** dispersed in 1 mM aqueous solutions of the selected nitroaromatics explosives at room temperature.

Fig. S22 Effect on the emission spectra of **1** dispersed in water upon incremental addition of TNP (inset: SV plots of TNP).

Fig. S23 Effect on the emission spectra of **1** dispersed in water upon incremental addition of 4-NP (inset: SV plots of 4-NP).

Fig. S24 Effect on the emission spectra of **1** dispersed in water upon incremental addition of 2-NP (inset: SV plots of 2-NP).

Fig. S25 Effect on the emission spectra of **1** dispersed in water upon incremental addition of 3-NP (inset: SV plots of 3-NP).

Fig. S26 Effect on the emission spectra of **1** dispersed in water upon incremental addition of 2-NT (inset: SV plots of 2-NT).

Fig. S27 Effect on the emission spectra of **1** dispersed in water upon incremental addition of 2,4-DNT (inset: SV plots of 2,4-DNT).

Fig. S28 Effect on the emission spectra of **1** dispersed in water upon incremental addition of NB (inset: SV plots of NB).

Fig. S29 Effect on the emission spectra of **1** dispersed in water upon incremental addition of 1,3-DNB (inset: SV plots of 1,3-DNB).

Fig. S30 Spectral overlap between normalized absorption spectra of selected antibiotics and the normalized emission spectra of **1** in water.

Fig. S31 Spectral overlap between normalized absorption spectra of selected nitroaromatics explosives and the normalized emission spectra of **1** in water.

Complex	1
Empirical formula	$C_{60}H_{50}N_4O_{16}Zn_3$
Formula weight	1279
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6166(4)
b/Å	14.4465(6)
c/Å	20.4967(10)
α/°	106.767(4)
β/°	98.427(4)
γ/°	101.203(4)
Volume/Å ³	2611.6(2)
Z	2
$\rho_{calc}g/cm^3$	1.273
µ/mm ⁻¹	1.426
F(000)	1004.0
Crystal size/mm ³	$0.27 \times 0.24 \times 0.21$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.934 to 50.998
Index ranges	$-10 \le h \le 11, -17 \le k \le 17, -24 \le l \le 24$
Reflections collected	19104
Independent reflections	9346 [R _{int} = 0.0352, R _{sigma} = 0.0565]
Data/restraints/parameters	9346/0/604
Goodness-of-fit on F ²	1.042
Final R indexes [I>=2σ (I)]	$R_1 = 0.0574$, $wR_2 = 0.1442$
Final R indexes [all data]	$R_1 = 0.0690$, $wR_2 = 0.1519$
Largest diff. peak/hole / e Å ⁻³	1.00/-2.07

 Table S1. Crystallographic data and experimental details for 1.

 $\mathsf{R} = \left[\sum \left| \left| \left| \mathsf{F}_{0} \right| \right| + \mathsf{F}_{0} \right| \right| / \sum \left| \left| \mathsf{F}_{0} \right| \right], \ \mathsf{R}_{\mathsf{W}} = \sum_{\mathsf{W}} \left[\left| \left| \mathsf{F}_{0}^{2} - \mathsf{F}\mathsf{c}^{2} \right| \right|^{2} / \sum_{\mathsf{W}} \left(\left| \left| \mathsf{F}_{\mathsf{W}} \right| \right|^{2} \right)^{2} \right]^{1/2}$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Zn1	01	1.964(3)	Zn2	O9⁵	2.021(3)
Zn1	O41	2.183(3)	Zn2	O12 ⁶	2.031(3)
Zn1	07 ²	2.109(3)	Zn2	013 ⁷	1.986(3)
Zn1	010	1.977(3)	Zn3	O2 ⁴	2.011(3)
Zn1	O12 ³	2.271(3)	Zn3	O4 ⁸	2.031(3)
Zn1	O14 ⁴	2.095(3)	Zn3	08	2.000(3)
Zn2	05	1.976(3)	Zn3	O16 ⁹	1.989(3)

Table S2. Selected bond lengths (Å) and angles (°) for 1.

Atom Atom Atom Angle/° Atom Atom Atom Angle/° 01 88.47(12) 0144 86.99(11) Zn1 **O**4¹ Zn1 O12³ 07² 95.33(12) **O**9⁵ 101.70(13) 01 Zn1 05 Zn2 01 Zn1 010 177.12(13) 05 Zn2 O12⁶ 127.70(13) 01 Zn1 O12³ 91.47(12) 05 Zn2 0137 104.19(12) O14⁴ 84.29(12) **O**9⁵ Zn2 O12⁶ 111.85(12) 01 Zn1 04¹ 179.41(10) 0137 Zn2 105.43(13) Zn1 012³ **O9**⁵ 07² Zn1 04¹ 87.53(11) 013⁷ Zn2 O12⁶ 104.03(12) 07² Zn1 O12³ 91.90(10) O2⁴ Zn3 O4⁸ 110.90(11) 010 04¹ 94.20(12) O2⁴ 104.90(12) Zn1 08 Zn3 010 Zn1 07² 83.70(12) 08 Zn3 04⁸ 102.96(12) 010 012³ 85.85(12) 016⁹ O2⁴ 103.48(13) Zn1 Zn3 010 Zn1 0144 96.62(12) 016⁹ Zn3 O4⁸ 128.67(13) 014⁴ Zn1 04¹ 93.59(11) 016⁹ Zn3 103.62(12) 08 O14⁴ **07**² 178.81(11) Zn1

¹1+X,+Y,+Z; ²1+X,1+Y,+Z; ³-1+X,+Y,+Z; ⁴-1+X,-1+Y,+Z;

⁵-X,1-Y,-Z; ⁶1-X,1-Y,-Z; ⁷1-X,2-Y,-Z; ⁸+X,-1+Y,+Z; ⁹1-X,2-Y,1-Z.

Analytes	K _{sv} (ppm ⁻¹)	Analytes	K _{sv} (ppm ⁻¹)
NZF	1.7 × 10 ⁻¹	TNP	5.3 × 10 ⁻¹
DTZ	1.6 × 10 ⁻¹	4-NP	3.8 × 10 ⁻¹
FZD	1.0 × 10 ⁻¹	2-NP	1.9 × 10 ⁻²
ODZ	6.3 × 10 ⁻²	3-NP	3.2×10^{-2}
NFT	9.1 × 10 ⁻²	2-NT	2.8×10^{-2}
RDZ	4.6 × 10 ⁻²	2,4-DNT	2.5 × 10 ⁻²
САР	6.4 × 10 ⁻³	NB	2.1 × 10 ⁻²
SMZ	1.7×10^{-2}	1,3-DNB	1.1×10^{-2}
MDZ	1.3 × 10 ⁻²		
SDZ	3.3 × 10 ⁻³		

Table S3. Summary of quenching constants (K_{sv}) of **1** for sensing different analytes at room temperature.

Analytes	HOMO (eV)	LUMO (eV)	Band gap
PCL ¹	-5.558	-1.777	3.781
SMZ ²	-5.63	-1.82	3.81
SDZ ¹	-5.538	-2.26	3.278
FFC ²	-6.62	-2.56	4.06
ODZ ²	-4.97	-3.02	1.95
DTZ ²	-6.37	-3.27	3.1
MDZ ²	-6.41	-3.34	3.07
CAP ²	-6.35	-3.42	2.93
RDZ ²	-6.57	-3.52	3.05
NZF ²	-5.99	-3.72	2.27
NFT ²	-6.21	-3.94	2.27
FZD ²	-6.37	-4.06	2.31
NB ²	-6.59	-3.43	3.16
2-NT ²	-6.51	-3.31	3.2
1,3-DNB ³	-7.9855	-3.4311	4.5544
2,4-DNT ³	-7.7645	-3.2174	4.5471
4-NP ²	-6.34	-3.87	2.47
3-NP ²	-6.32	-3.75	2.57
2-NP ²	-6.24	-3.44	2.8
TNP ²	-7.39	-4.97	2.42

 Table S4. HOMO and LUMO energies calculated for the anlytes used at B3LYP/6-31G** level.

B. Wang, X. L. Lv, D. W. Feng, L. H. Xie, J. Zhang, M. Li, Y. B. Xie, J. R. Li and H. C. Zhou, *J. Am. Chem. Soc.*, 2016, **138**, 6204-6216.
 H. R. Fu, L. B. Yan, N. T. Wu, L. F. Ma and S. Q. Zang, *J. Mater. Chem. A.*, 2018, **6**, 9183-9191.

3. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, Angew. Chem. Int. Ed., 2013, 52, 2881-2885.