Supporting Information for

Highly active Ce, Y, La modified Cu/SiO₂ catalysts for hydrogenation of methyl acetate to ethanol

Zhiheng Ren,^{abc} Muhammad Naeem Younis,^c Chunshan Li,^{cd*} Zengxi Li,^e Xiangui

Yang,^{ab*} Gongying Wang,^{ab}

^{*a*} Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. E-mail: <u>yangxg@cioc.ac.cn.</u>

^b National Engineering Laboratory & Technology, University of Chinese Academy of Science, Beijing 101408, China.

^c CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, The National Key Laboratory of Clean and Efficient Coking Technology, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China. ^d Zhongke Langfang Institute of Process Engineering, Hebei Province, PR China

E-mail: <u>csli@ipe.ac.cn.</u>

^e School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

Time/min	Product	Molecular Weight		
1.32		32		
1.4	ОН	46		
1.55		46		
1.58	°	74		
1.7	НО	74		
1.78	ОН	60		
1.88	ОН	88		
1.94	o	72		
2.06	° o	88		
2.41		102		
2.58		104		

Table S1. Product analysis from GC-MS.

Reaction condition: T=280 °C, P=2.5MPa, GHSV=3000 h⁻¹, LHSV=1 h⁻¹.

Main Side reaction:

$$CH_{3}COOCH_{3}+CH_{3}CH_{2}OH \rightarrow CH_{3}COOC_{2}H_{5}+CH_{3}OH$$
(1)

$$CH_3CH_2OH \rightarrow CH_3CHO + H_2$$
 (2)

$$CH_3CH_2OH \rightarrow CH_3CH_2 + H_2O$$
(3)

Fig. S1. N₂ adsorption-desorption isotherm and pore distribution of selected SiO₂ and La₂O₃/SiO₂.

Catalyst $face (°)$ $d_{Cu} (nm)$	d_{Cu} (nm)	
Cu/SiO ₂ 43.4 4.5		
Cu/SiO ₂ -5Ce 43.5 4.1		
Cu/SiO ₂ -5Y 43.5 7.7		
Cu/SiO ₂ -1La 43.5 3.6		
Cu/SiO ₂ -5La 43.5 3.5		
Cu/SiO ₂ -10La 43.5 7.1		
Spent Cu/SiO ₂ 43.1 8.6		
Spent Cu/SiO ₂ -5La 43.2 5.2		

Table S2. Grain size of the copper crystallite of different catalyst.

Fig. S2. FTIR spectra of Cu-SiO₂ and Cu/SiO₂-xM catalysts.

The IR bands of $\delta_{OH} = 670 \text{ cm}^{-1}$ and $v_{SiO} = 1040 \text{ cm}^{-1}$ could be suggested that the presence of copper phyllosilicate phase in all samples, while silica exhibits an asymmetric v_{SiO} band at 1118 cm⁻¹ and a symmetric v_{SiO} band at 800 cm⁻¹. I_{670}/I_{800} is denoted the relative contents of copper phyllosilicate in different catalysts.¹⁻² It could be found that the value of different calcined catalyst is almost the same, suggesting the amount of Cu₂SiO₅(OH)₂ in different catalyst has no big difference.

[1] T. Toupance, M. Kermarec, C. Louis, J. Phys. Chem. B 2000, 104, 965–972.

[2] H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nat. Commun., 2013, 4, 2339–2345.

N₂O titration method

The copper surface area was calculated combined with the results of N₂O titration and Cu LMM XAES spectra according to previous report.²⁻³ Typically, 50 mg of the calcined catalysts were reduced by the same H₂-TPR procedure described **in section 2.2** (denoted as total TPR). After cooling down to 60 °C, the reduced samples were exposed to a pure N₂O flow (60 mL/min, 1 h) to completely oxidize surface copper atoms into Cu₂O. Afterwards, the resulting surface oxidized samples underwent the second TPR run as the first one (denoted as surface TPR). The Cu dispersion (D_{Cu}), specific expose Cu surface area (S_{Cu}) were calculated by Eqs. (1) and Eqs. (2), by assuming 1.47×10^{19} copper atoms per square meter. Then the S_{Cu}⁺ (S_{Cu}⁰) could be calculated combined the values of S_{Cu} and the Cu⁺ (Cu⁰) ratio from the results of Cu LMM XAES under the assumption that the Cu⁺ ions and Cu⁰ atoms occupy identical areas.

$$D_{Cu}(\%) = \frac{2 \times H_2 \text{ Consumption (surface TPR)}}{H_2 \text{ Consumption (total TPR)}} \times 100$$
(1)

$$S_{Cu}(m^2 g^{-1} Cu) = \frac{D_{Cu} \times N_{av}}{M_{Cu} \times 1.46 \times 10^{19}}$$
(2)

Where N_{av} : Avogadro constant = 6.02×10^{23} (mol⁻¹); M_{Cu} : relative atomic mass = 63.55 (g/mol).

[3] Y. Zhao, B. Shan, Y. Wang, J. Zhou, S. Wang and X. Ma, *Ind. Eng. Chem. Res.*, 2018, 57, 4526–4534.

[4] P. Ai, M. Tan, P. Reubroycharoen, Y. Wang, X. Feng, G. Liu, G. Yang and N. Tsubaki, *Catal. Sci. Technol.*, 2018, 8, 6441–6451.

Fig. S4. Effects of Cu⁰ surface area of Cu-SiO₂ and Cu/SiO₂-xM catalyst on the STY_{EtOH}.

Fig. S5. TG and DTA analysis of spent Cu/SiO₂ after long-term stability test.

From the result of Figure S5, it could be found that there have three steps in the

whole stage. The first step before 125 °C is related to the weight loss of surface water. After that, the weight has increased might be due to the Cu⁺ species oxidation when exposed to the air. The third step after 260 °C is probably corresponding to the decomposition of CuO. From previous literatures, the carbon deposit would be oxidized at 200-400 °C. But from our results, it could be inferred that the formation of carbon deposition is not obvious.

Fig. S6. TEM image of spent Cu/SiO₂ and Cu-/SiO₂-5La catalyst after long-term estimating.

Catalyst	Pressure (Mpa)	LHSV (h ⁻¹)	H ₂ /MA	Reaction temperature (°C)	MA conversion (%)	Ref.	
Cu/SiO ₂ -HP	2.5	2	15	250	86.8	This work	
Cu/SiO ₂ -5La-HP	2.5	2	15	250	94.3	This work	
Cu/SiO ₂ -AE	2	1	40	220	80.9	5	
Cu/SiO ₂ -AE	3	2	15	250	83.7	6	
Cu_9Zn_1/SiO_2	2	2	20	220	92	7	
$Cu_{0.9}Zn_{0.1}/SBA-15$	2	2	20	220	85	8	
Cu@CeO ₂	2.5	1	80	215	99	9	
Cu/9MgO-SiO ₂	3	2	10	340	80.3	10	
3Mn-Cu/SiO ₂	3	2	15	250	96	11	

Table S3. Summary of Cu-based catalysts for hydrogenation of MA to ethanol under different reaction conditions.

HP: hydrolysis-precipitation method; AE: ammonia evaporation

[5] X. Dong, X. Ma, H. Xu and Q. Ge, Catal. Sci. Technol., 2016, 6, 4151–4158.

- [6] Y. Zhang, C. Ye, C. Guo, C. Gan and X. Tong, Chinese J Catal., 2018, 39, 99–108.
- [7] Y. Zhao, B. Shan, Y. Wang, J. Zhou, S. Wang and X. Ma, *Ind. Eng. Chem. Res.*, 2018, 57, 4526–4534.
- [8] Y. Wang, J Liao, J. Zhang, S. Wang, Y. Zhao and X. Ma, AIChE J, 2016, 63, 2839–2849.
- [9] Y. Wang, Y. Zhao, J. Lv and X. Ma, ChemCatChem, 2017, 9, 2085–2090.
- [10] H. Qin, C. Guo, C. Sun and J. Zhang, J Mol. Catal. A, 2015, 409, 79-84.
- [11] C. Ye, C. Guo, C. Sun and Y. Zhang, RSC Adv., 2016, 6, 113796–113802.