Monitoring glycosidase activity for clustered sugar substrates, a study on β-glucuronidase.

 Papot ${ }^{\text {b }}$ and Sébastien G. Gouin ${ }^{*}$ a
a Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 , rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
b Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP, Université de Poitiers, UMR-CNRS 7285, 4 Rue Michel Brunet, 86022 Poitiers, France.
c Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
d. Université de Nantes, UFIP, UMR CNRS 6286, UFR des Sciences et des Techniques

Table of Contents

Experimental procedures (chemistry) S2-S7

Experimental procedures (molecular dynamic simulations) S8

Production for the enzymatic assays S9-S10

NMR spectra S11-S21

Experimental Procedures (Chemistry)

Materials

NMR spectra were recorded at room temperature with a Bruker Avance 300 Ultra Shield or eBruker Avance III 400 spectrometer and chemical shifts are reported in parts per million relative to tetramethylsilane or a residual solvent peak $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}: \delta=7.26,{ }^{13} \mathrm{C}: \delta=77.2\right.$; DMSO-d6: ${ }^{1} \mathrm{H}: \delta=2.54$, ${ }^{13} \mathrm{C}: \delta=40.4$; MeOD: ${ }^{1} \mathrm{H}: \delta=3.31,{ }^{13} \mathrm{C}: \delta=49.0$). Peak multiplicity is reported as: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). High resolution mass spectra HRMS where obtained by Electrospray Ionisation (ESI) on a Micromass-Waters Q-TOF Xevo G2-XS or with a Bruker Autoflex III SmartBeam spectrometer (MALDI). Low-resolution mass spectra (MS) were recorded with a Thermo electron DSQ spectrometer. All reagents were purchased from Acros Organics or Aldrich and were used without further purification. Column chromatography was conducted on silica gel Kieselgel SI60 (40-63 $\mu \mathrm{m}$) from Merck. Reactions requiring anhydrous conditions were performed under argon. Dichloromethane was distilled from calcium hydride under nitrogen prior to use.

Compound 7

To a solution of the precursor $\mathbf{A}^{39}(180 \mathrm{mg}, 0.34 \mathrm{mmol})$ and 4-nitrophenyl chloroformate ($140 \mathrm{mg}, 0.68$ $\mathrm{mmol})$ in dry dichloromethane (3.5 mL) was added pyridine $(77 \mu \mathrm{~L}, 0.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred 1 hour at room temperature, hydrolyzed with saturated aqueous NaHCO_{3}. The mixture was extracted three times with dichloromethane and the combined organic layers were dried over MgSO_{4}, filtrated and concentrated in vacuo. Purification by column chromatography over silica gel (petroleum ether/ethyl acetate $6 / 4)$ afforded $7(235 \mathrm{mg}, 0.343 \mathrm{mmol}$, quantitative yield) as a mixture of two diastereoisomers (white solid). ${ }^{*}$ Compound \mathbf{A} was prepared as previously described in the literature (B. Renoux, T. Legigan, S. Bensalma, C. Chadéneau, J.-M. Muller and S. Papot, Org. Biomol. Chem., 2011, 9, 8459)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 8.3\left(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}_{2 \mathrm{a}}\right.$), $7.9\left(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{3}\right.$), $7.65(\mathrm{dd}, 1 \mathrm{H}$, $J=8.7 \mathrm{~Hz}$ and $J=1.8 \mathrm{~Hz}, \mathrm{H}_{5}$) , $7.4\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{6^{\prime}}, 2 \mathrm{H}_{3 \mathrm{a}}\right), 5.8\left(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}^{\prime} \mathrm{H}_{1^{\prime}}\right), 5.3\left(\mathrm{~m}, 4 \mathrm{H}^{\prime}, \mathrm{H}_{1}, \mathrm{H}_{2}\right.$, $\left.\mathrm{H}_{3}, \mathrm{H}_{4}\right), 4.2\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right), 2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}{ }^{\prime}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.09(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}_{4}{ }^{\bullet}$), $2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1(\mathrm{C}=\mathrm{O}, \mathrm{Ac}), 169.5$ ($\mathrm{C}=\mathrm{O}, \mathrm{Ac}$), 169.3 ($\mathrm{C}=\mathrm{O}, \mathrm{Ac}$), 166.8 ($\mathrm{C}=\mathrm{O}, \mathrm{COOMe}$), 155.3 ($\mathrm{C}_{\text {carbonate }}$), 149.6 (Car), 145.7 (Car), 141.1 (Car), 133.4 (Car), 132.4 (Car), 132.3 (Car), 125.5 (Car), 123.8 (Car), 121.8 (Car), 119.9 (Car), 99.4 $\left(\mathrm{C}_{1}\right)$, $77.2\left(\mathrm{C}_{3^{\prime}}\right)$, $72.6\left(\mathrm{C}_{5}\right), 71.0\left(\mathrm{C}_{1^{\prime}}\right), 70.2\left(\mathrm{C}_{4}\right)$), 68.7, $\left(3 \mathrm{CH}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\right), 53.2\left(\mathrm{CH}_{3}, \mathrm{COOMe}\right), 26.1$ $\left(\mathrm{C}_{2}{ }^{י}\right)$, $20.4\left(3 \mathrm{CH}_{3}, \mathrm{OAc}\right)$; HRESI-MS: $\mathrm{m} / \mathrm{z} 711.1280$ (calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{17} \mathrm{~N}_{2} \mathrm{Na} 711.1286[\mathrm{M}+\mathrm{Na}]^{+}$) * Compound \mathbf{A} was prepared as previously described in the literature (B. Renoux, T. Legigan, S. Bensalma, C. Chadéneau, J.-M. Muller and S. Papot, Org. Biomol. Chem., 2011, 9, 8459)

Compound 9

The activated carbonate 7 ($1.28 \mathrm{mmol}, 900 \mathrm{mg}, 1$ equiv.), the 7 -amino-4-methyl-2H-chromen-2-one $\mathbf{8}$ ($3.84 \mathrm{mmol}, 619 \mathrm{mg}, 3$ equiv.) and hydroxybenzotriazole ($1.28 \mathrm{mmol}, 173 \mathrm{mg}, 1$ equiv.) were dissolved in 4.5 mL of dry dimethylformamide and diisopropylethylamine ($1.54 \mathrm{mmol}, 199 \mathrm{mg}, 268 \mathrm{~mL}, 1.2 \mathrm{eq}$) was added. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled down and the DMF was evaporated under high vacuum. The crude was dissolved into water and ethyl acetate. The organic layer was separated and washed 4 times with a saturated aqueous solution of NaHCO_{3}. The organic layer was dried with MgSO_{4} and concentrated under reduced pressure. The compound $\mathbf{9}$, obtained as a mixture of diastereoisomers, was isolated after successive purifications by automated flash-chromatography using a linear gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ from $100 / 0$ to $95 / 5$ (349 mg , yield 38%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$); $7.92\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$), $7.60(\mathrm{ddd}, J=2.2 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), $7.52\left(\mathrm{dd}, J=0.7 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{a}}\right), 7.46\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8 \mathrm{a}}\right), 7.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right.$. and $\mathrm{H}_{6 \mathrm{a}}$), 7.34 (br.d, $\left.J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 6.20$ (br.s, $1 \mathrm{H}, \mathrm{H}_{2 \mathrm{a}}$), $5.89\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right.$.) , $5.33(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}_{2}, \mathrm{H}_{3}$ and $\left.\mathrm{H}_{4}\right), 5.23\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.24\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.83(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{2}{ }^{\prime}\right), 2.41(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 2.12(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ac}), 2.06-2.05\left(\mathrm{~m}, 7 \mathrm{H}, 2 \mathrm{Ac}\right.$ and $\mathrm{H}_{1} \times$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $170.2(\mathrm{C}=\mathrm{O}, \mathrm{Ac}), 169.5(\mathrm{C}=\mathrm{O}, \mathrm{Ac}), 169.4(\mathrm{C}=\mathrm{O}, \mathrm{Ac}), 166.9(\mathrm{CO}$, COOMe), $161.2(\mathrm{C}=\mathrm{O}$, coumarine $), 154.5\left(\mathrm{C}^{\mathrm{IV}}{ }_{\text {ar }}\right.$, coumarine $), 152.4\left(\mathrm{C}^{\mathrm{IV}}{ }_{\mathrm{ar}}\right.$, coumarine), $151.7(\mathrm{C}=\mathrm{O}$, $\mathrm{NHCOO}), 149.3\left(\mathrm{C}^{\mathrm{IV}}\right.$ ar , nitrophenyl), 141.2 and 141.1 and $141.0\left(2 \mathrm{C}^{\mathrm{IV}}{ }_{\mathrm{ar}}\right.$, coumarine and nitrophenyl), 135.0 and $134.9\left(\mathrm{C}^{\mathrm{IV}}{ }_{\mathrm{ar}}\right.$, nitrophenyl), 132.5 and $132.3\left(\mathrm{CH}_{\mathrm{ar}}, \mathrm{C}_{5}\right), 125.6\left(\mathrm{CH}_{\mathrm{ar}}, \mathrm{C}_{5 \mathrm{a}}\right), 123.6$ and 123.3 $\left(\mathrm{CH}_{\mathrm{ar}}, \mathrm{C}_{3}\right)$, $119.9\left(\mathrm{CH}_{\text {ar }}, \mathrm{C}_{6}\right), 116.0\left(\mathrm{C}^{\mathrm{IV}}{ }_{\text {arr }}\right.$, coumarine $), 114.6\left(\mathrm{CH}_{\mathrm{ar}}, \mathrm{C}_{6 \mathrm{a}}\right), 113.5\left(\mathrm{CH}_{\mathrm{ar}}, \mathrm{C}_{2 \mathrm{a}}\right), 106.3$ $\left(\mathrm{CH}_{\mathrm{ar}}, \mathrm{C}_{8 \mathrm{a}}\right), 99.7\left(\mathrm{CH}, \mathrm{C}_{1}\right), 78.3\left(\mathrm{C}^{\mathrm{IV}}, \mathrm{C}_{3} י\right.$), $73.3\left(\mathrm{CH}, \mathrm{C}_{1} \times\right.$), $72.7\left(\mathrm{CH}, \mathrm{C}_{5}\right), 72.3\left(\mathrm{CH}, \mathrm{C}_{4}\right.$) $), 71.2$ and 71.1 and 70.3 and 68.8 and $68.8\left(3 \mathrm{CH}, \mathrm{C}_{2}, \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{4}\right), 53.2$ and $53.2\left(\mathrm{CH}_{3}, \mathrm{COOMe}\right), 26.5$ and 26.5 $\left(\mathrm{CH}_{2}, \mathrm{C}_{2}, \cdots\right), 20.7$ and 20.7 and $20.6\left(3 \mathrm{CH}_{3}, \mathrm{OAc}\right), 18.7\left(\mathrm{CH}_{3}\right.$, coumarine); HRMS (ESI) m/z: $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{16}[\mathrm{M}+\mathrm{Na}]^{+}$calculated $=747.1644,[\mathrm{M}+\mathrm{Na}]^{+}{ }_{\text {measured }}=747.1642$

Compound 9 ($315 \mathrm{mg}, 0.435 \mathrm{mmol}$, 1 equiv.) was dissolved in $\mathrm{MeOH}(40 \mathrm{~mL}$). The mixture was cooled at $0^{\circ} \mathrm{C}$ and a solution of lithium hydroxide monohydrate ($192 \mathrm{mg}, 4.57 \mathrm{mmol}, 10.5$ equiv.) in water (10 mL) was added dropwise. The mixture was stirred for 2 hrs , hydrolyzed with IRC-50 acidic resin, filtrated and concentrated in vacuo. High degree of purity for $\mathbf{1 0}$ was obtained using automated reverse phase column chromatography (gradient elution 10% to $100 \% \mathrm{MeCN}^{2} \mathrm{H}_{2} \mathrm{O}(0.05 \%$ TFA) as a mixture of two diastereoisomers ($148 \mathrm{mg}, 0.25 \mathrm{mmol}, 58 \%$, purity $>95 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}$) $7.97\left(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{H}_{3^{\prime}}\right), 7.72\left(\mathrm{dd}, J=2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{5^{\prime}}\right), 7.67(\mathrm{~d}$, $\left.J=8.7 \mathrm{~Hz}, \mathrm{H}_{5 \mathrm{a}}\right), 7.60\left(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{H}_{8 \mathrm{a}}\right), 7.44\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.39\left(\mathrm{dd}, J=2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}\right), 6.20$ (br.s, $\mathrm{H}_{2 \mathrm{a}}$), $5.90\left(\mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{H}_{1}\right.$) $), 5.19\left(\mathrm{dd}, J=1 \mathrm{~Hz}, J=7 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.04\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.63(\mathrm{t}, 1 \mathrm{H}, J$ $\left.=9.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{3}\right), 2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \cdot{ }^{\prime}\right), 2.44(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}), 2.38(\mathrm{t}, 1 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}, \mathrm{H}_{4}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}$): 173.3, 163.4, 155.6, 155.4, 154.3, 154.0, 151.0, $150.9,144.8\left(\mathrm{C}_{\mathrm{IV}}\right), 144.1\left(\mathrm{C}_{\mathrm{IV}}\right), 142.2\left(\mathrm{C}_{3^{\prime}}\right)$, $135.5\left(\mathrm{C}_{\mathrm{IV}}\right), 133.3$, $133.2\left(\mathrm{C}_{5 \mathrm{a}}\right), 126.8\left(\mathrm{C}_{5}\right)$, $124.9\left(\mathrm{C}_{4}{ }^{י}\right)$, $124.4\left(\mathrm{C}_{3}{ }^{\circ}\right), 118.8\left(\mathrm{C}_{6}\right)$, $116.4\left(\mathrm{C}_{\text {IV }}\right), 116.0\left(\mathrm{C}^{6 \mathrm{a}}\right), 113.1\left(\mathrm{C}_{2 \mathrm{a}}\right), 106.5\left(\mathrm{C}_{8 \mathrm{a}}\right), 102.4\left(\mathrm{C}_{1}\right), 79.8,77.3\left(\mathrm{C}_{2}\right)$, $76.6\left(\mathrm{C}_{5}\right)$, $74.4\left(\mathrm{C}_{3}\right)$, $72.7\left(\mathrm{C}_{4}\right)$, 67.9, 27.0, 18.5; HRMS (ESI) $m / z: \mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{13}$ [M-H] ${ }^{+}$calculated $=$ $583.1206,[\mathrm{M}-\mathrm{H}]^{+}$measured $=583.1201$.
icosa-(ethylene glycol) diazide ($\mathrm{n}=18$)

Mesyl chloride ($103 \mu \mathrm{~L}, 1.3 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of icosaethylene glycol ($500 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ with triethylamine ($300 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$). After 30 minutes the reaction was heated at room temperature and stirred overnight. The mixture was concentrated under reduced pressure and used in the next step without purification. The crude product was dissolved in DMF (20 mL) and sodium azide ($108 \mathrm{mg}, 1.66 \mathrm{mmol}$) was added. The mixture was heated at $80^{\circ} \mathrm{C}$ overnight, and then concentrated under reduced pressure. The crude product was dissolved in DCM (15 mL) and basic resin IRN 78 (excess) was added to remove trimethylamine salt. After 1 hour the mixture was filtered through a Celite pad and the filtrate was evaporated. The solid was purified by flash column chromatography ($\mathrm{DCM} / \mathrm{MeOH}: 98 / 2$) to afford the diazide ($359 \mathrm{mg}, 68 \%$) as a yellowish solid.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 3.72-3.55\left(\mathrm{~m}, 76 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.37\left(\mathrm{t}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 70.7\left(\mathrm{OCH}_{2}\right), 70.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right)$. HRMS (ESI $\left.{ }^{+}\right)$: Found 971.5379 $\mathrm{C}_{40} \mathrm{H}_{80} \mathrm{O}_{19} \mathrm{~N}_{6} \mathrm{Na}$ requires 971.5370 .

Compound 1

To a solution of mono-azide ($7.2 \mathrm{mg}, 41 \mu \mathrm{~mol}$) and $\mathbf{1 0}(20 \mathrm{mg}, 34.2 \mu \mathrm{~mol})$ in dioxane-water ($3 \mathrm{~mL}, 4-$ 1) was added copper sulfate ($2.5 \mathrm{mg}, 10 \mu \mathrm{~mol}$) and sodium ascorbate ($4.1 \mathrm{mg}, 20.5 \mu \mathrm{~mol}$). The mixture was stirred overnight at room temperature and Quadrasil ${ }^{\circledR}$ MTU ($25 \mathrm{mg}, 25 \mu \mathrm{~mol}$) was added to trap the residual copper. After 30 minutes the reaction was filtered through a pad of celite and the filtrate was evaporated under reduced pressure. The residue was purified by reverse phase column chromatography $\left(\mathrm{H}_{2} 0 / \mathrm{ACN}: 100=>60 / 40\right)$ to afford $\mathbf{1}(22 \mathrm{mg}, 94 \%)$ as a yellowish solid.
${ }^{1}{ }^{H}$ NMR (400MHz, MeOD) $\delta: 7.85-7.80$ (m, 2H, H-3', H-4'), 7.62-7.56 (m, 2H, H-5a, H-5'), 7.49 (d, $1 \mathrm{H}, J=1.93 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$), $7.40\left(\mathrm{dd}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{a}), 6.14(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 6.05(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{H}-1$ ''), 5.18 (dd, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}, J=7.5$ Hz, H-1), 4.51 (t, 2H, $J=4.9 \mathrm{~Hz}, \mathrm{H}-5$ ''), 4.04 (d, 1H, $J=9.7 \mathrm{~Hz}, \mathrm{H}-5$), 3.83-3.77 (m, 2H, H-6''), 3.673.70 (m, 3H, H-4, H-10''), 3.57-3.46 (m, 10H, H-2, H-3, H-7'', H-8'', H-9''), 3.41-3.32 (m, 2H, H-2''), 2.39 (d, 3H, $J=1.0 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (400MHz, MeOD) $\delta: 171.8,163.3,155.5,155.3,154.0,150.7$, 143.9 (CIV), 143.7 (CIV), 141.9 (C-3''), 135.9 (CIV), 133.2 (C-5a), 126.7 (C-5'), 125.7 (C-4'), 124.2 (C3^{\prime}), 118.9 (C-6'), 116.3 (C CIV), 115.9 (C-6a), 113.1 (C-2a), 106.3 (C-8a), 102.3 (C-1), 77.3 (C-2), 76.6 (C-5), 75.5 (C-1''), 74.4 (C-3), 73.6 (C-9''), 72.6 (C-4), 70.4 (C-7'’, C-8'), 62.2 (C-10''), 51.5 (C-5''), $33.4(\mathrm{C}-2$ ' $)$), $18.5\left(\mathrm{CH}_{3}\right)$; HRMS (ES+ m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{16}: 760.2314$ found 760.2316 .

Compound 2

To a solution of diazide ($4 \mathrm{mg}, 16.4 \mu \mathrm{~mol}$) and $\mathbf{1 0}(21.1 \mathrm{mg}, 36.1 \mu \mathrm{~mol})$ in dioxane-water ($3 \mathrm{~mL}, 4-1$) was added copper sulfate ($2.46 \mathrm{mg}, 9.84 \mu \mathrm{~mol}$) and sodium ascorbate ($3.90 \mathrm{mg}, 19.7 \mu \mathrm{~mol}$). The mixture was stirred overnight at room temperature and Quadrasil ${ }^{\circledR}$ MTU ($25 \mathrm{mg}, 25 \mu \mathrm{~mol}$) was added to trap the residual copper. After 30 minutes the reaction was filtered through a Celite pad and the filtrate was evaporated under reduced pressure. The residue was purified by reverse phase column chromatography $\left(\mathrm{H}_{2} 0 / \mathrm{ACN}\right.$: $\left.100=>60 / 40\right)$ to afford $\mathbf{2}(18 \mathrm{mg}, 78 \%)$ as a yellowish solid.
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO-d6) $\delta: 10.41-10.35$ (m, 2H, OH), 7.89-7.86 (m, 4H, H-3',H-4'), 7.69-7.61 (m, 4H, H-5a , H-5'), 7.52-7.48 (m, 2H, H-8 ${ }_{\mathrm{a}}$), 7.46-7.35 (m, 4H, H-6 ${ }_{\mathrm{a}}$, H-6'), 6.21 (br s, 2H, H-2a), 6.06-5.99 (m, 2H, H-1''), 5.37-5.30 (m, 2H, OH), 5.22-5.11 (m, 4H, H-1, OH), $4.44(\mathrm{t}, 4 \mathrm{H}, J=5.2 \mathrm{~Hz}$, H-5''), 3.75-3.68 (m, 6H, H-5, H-6''), 3.43-3.22 (m, 18H, H-2, H-3, H-4, H-2'', 8 *PEG, HDO), 2.37 (br s, $6 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO-d6) $\delta: 173.2,160.0,153.8,153.2,152.4\left(\mathrm{C}_{\mathrm{IV}}\right), 141.9\left(\mathrm{C}_{\mathrm{IV}}\right)$, 139.7 (C-3'’), 133.7 (C_{IV}), 132.1 (C-5a), 125.9 (C-5'), 123.5 (C-4'’), 122.7 (C-3'), 116.9 (C-6'), 115.7 $\left(\mathrm{C}_{\mathrm{IV}}\right), 114.4$ (C-6a), 111.9 (C-2a), 104.6 (C-8a), 99.8 (C-1), 76.4 (C-2), 74.6 (C-5), $74.0(\mathrm{C}-1 ’), 72.8$
(C-3), 71.7 (C-4), 69.5 (PEG), 68.8 (C-6’’), 49.3 (C-5'’), 31.9 (C-2'’), 17.9 (CH_{3}); HRMS (ES-) m/z calcd for $\mathrm{C}_{62} \mathrm{H}_{63} \mathrm{~N}_{10} \mathrm{O}_{29}: 1411.3762$ found 1411.3800 .

Compound 3

Copper sulfate $(0.33 \mathrm{mg}, 1.32 \mu \mathrm{~mol})$ and sodium ascorbate $(0.52 \mathrm{mg}, 2.63 \mu \mathrm{~mol})$ were added to a solution of di-azide ($2.5 \mathrm{mg}, 2.63 \mu \mathrm{~mol}$) and $\mathbf{1 0}(6.53 \mathrm{mg}, 5.79 \mu \mathrm{~mol})$ in dioxane-water ($2 \mathrm{~mL}, 4-1$). The mixture was stirred overnight at room temperature and Quadrasil ${ }^{\circledR}$ MTU ($25 \mathrm{mg}, 25 \mu \mathrm{~mol}$) was added to trap the residual copper. After 30 minutes the reaction was filtered through a pad of celite and the filtrate was evaporated under reduced pressure. The residue was purified by reverse phase column chromatography ($\mathrm{H}_{2} 0 / \mathrm{ACN}$: $100=>60 / 40$) to afford $\mathbf{3}(22 \mathrm{mg}, 67 \%)$ as a yellowish solid.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 7.79$ (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ '), $7.62-7.52$ (m, 4H, H-5a, H-5'), 7.477.41 (m, 2H, H-8 ${ }^{\text {a }}$), 7.37-7.26 (m, 4H, H-6a, H-6'), 6.13 (br s, 2H, H-2a), 5.97 (t, 2H, J=6.3 Hz, H-1'’), 5.18-5.11 (m, 2H, H-1), 4.45 (t, 4H, J=5.1 Hz, H-5''), 4.00 (d, 2H, J=9.7 Hz, H-5), 3.78-3.72 (m, 4H, H-6''), 3.62-3.46 (m, 78H, H-2, H-3, H-4, 72*PEG), 3.32-3.26 (m, 4H, H-2''), 2.38-2.32 (m, 6H, Me); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 170.4,162.0,154.9,154.3,153.2,149.6\left(\mathrm{C}_{\mathrm{IV}}\right), 142.9\left(\mathrm{C}_{\mathrm{IV}}\right), 141.0(\mathrm{C}-$ 3 ''), 135.5 ($\mathrm{C}_{\text {IV }}$), 132.8 (C-5a), 126.5 (C-5'), 125.1 (C-4'), 123.6 (C-3'), 117.9 (C-6'), 115.8 (CIV), 115.2 (C-6a), 112.9 (C-2a), 105.8 (C-8a), 101.2 (C-1), 76.1 (C-2), 75.6 (C-5), 74.8 (C-1’’), 73.3 (C-3), 71.7 (C-4), 70.6 (PEG), 69.6 (C-6'’), 50.8 (C-5'’), 32.8 (C-2’'), $18.4\left(\mathrm{CH}_{3}\right)$; HRMS (ES-) m/z calcd for $\mathrm{C}_{94} \mathrm{H}_{126} \mathrm{~N}_{10} \mathrm{O}_{45}: 2114.7879$ found 2114.7898.

Compound 4

Copper sulfate $(1.23 \mathrm{mg}, 4.89 \mu \mathrm{~mol})$ and sodium ascorbate $(1.94 \mathrm{mg}, 9.79 \mu \mathrm{~mol})$ were added to a solution of diazide ($25 \mathrm{mg}, 8.16 \mu \mathrm{~mol}$) and $\mathbf{1 0}(10.5 \mathrm{mg}, 17.95 \mu \mathrm{~mol})$ in dioxane-water ($3 \mathrm{~mL}, 4-1$). The mixture was stirred overnight at room temperature and Quadrasil ${ }^{\circledR}$ MTU ($12.5 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$) was added to trap the residual copper. After 30 minutes the reaction was filtered through a pad of celite and the filtrate was evaporated under reduced pressure. The residue was purified by reverse phase column chromatography $\left(\mathrm{H}_{2} 0 / \mathrm{ACN}: 100 \Rightarrow 60 / 40\right)$ to afford $\mathbf{4}(21 \mathrm{mg}, 61 \%)$ as a yellowish solid.
 7.53 (m, 2H, H-8), 7.45-7.39 (m, 2H, H-6'), 7.38-7.31 (m, 2H, H-6a), 6.18 (br s, 2H, H-2a), 6.08 (t, 2H, $J=6.4 \mathrm{~Hz}, \mathrm{H}-1$ ''), $5.21-5.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 4.52\left(\mathrm{t}, 4 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}{ }^{\prime}\right), 4.03(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}, \mathrm{H}-$ 5), 3.83-3.77 (m, 4H, H-6'’), 3.65-3.55 (m, 270H, H-2, H-3, H-4, 264*PEG), 3.47-3.33 (m, 4H, H-2'’), 2.43 (s, $6 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR (400MHz, MeOD) $\delta: 171.6,163.1,155.6,155.3,153.9,150.8$ (C_{IV}), 144.0
(C_{IV}), 141.9 (C-3'’), 135.9 (C_{IV}), 133.2 (C-5a), 126.9 (C-5'), 125.8 (C-4'’), 124.2 (C-3'), 118.9 (C-6'), $116.4\left(\mathrm{C}_{\mathrm{IV}}\right), 116.0$ (C-6a), 113.2 (C-2a), 106.4 (C-8a), 102.4 (C-1), 77.4 (C-2), 76.7 (C-5), 75.5 (C-1'’), 74.3 (C-3), 72.7 (C-4), 71.5 (PEG), 70.4 (C-6''), 51.5 (C-5''), 33.5 (C-2''), $18.6\left(\mathrm{CH}_{3}\right)$; HRMS (ES-) m / z calcd for $\mathrm{C}_{190} \mathrm{H}_{318} \mathrm{~N}_{10} \mathrm{O}_{93}: 4228.0462$ found 4228.0454.

Compound 5

To a solution of diazide ($25 \mathrm{mg}, 4.25 \mu \mathrm{~mol}$) and $\mathbf{1 0}(5.50 \mathrm{mg}, 9.35 \mu \mathrm{~mol})$ in dioxane-water ($3 \mathrm{~mL}, 4-1$) was added copper sulfate ($1.28 \mathrm{mg}, 5.10 \mu \mathrm{~mol}$) and sodium ascorbate ($2.02 \mathrm{mg}, 10.20 \mu \mathrm{~mol}$). The mixture was stirred overnight at room temperature and Quadrasil ${ }^{\circledR}$ MTU ($12.5 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$) was added for trapped the residual copper. After 30 minutes the reaction was filtered through a Celite pad and the filtrate was evaporated under reduced pressure. The residue was purified by reverse phase column chromatography $\left(\mathrm{H}_{2} 0 / \mathrm{ACN}\right.$: $\left.100=>60 / 40\right)$ to afford $5(19 \mathrm{mg}, 62 \%)$ as a yellowish solid.
${ }^{1}{ }^{1} \mathrm{H}$ NMR (500MHz, MeOD) $\delta: 7.88-7.82$ (m, 4H, H-3', H-4''), 7.67 (d, 2H, $J=8.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), $7.64-$ 7.60 (m, 2H, H-5'), 7.58 (br s, 2H, H-8a), 7.43 (dd, 2H, $J=2.5 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, \mathrm{H}-6$ '), 7.37 (d, 2H, $J=$ $8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{G}_{\mathrm{a}}$), 6.20 (br s, 2H, H-2a), 6.08 (t, 2H, $J=6.5 \mathrm{~Hz}, \mathrm{H}-1$ ''), $5.20-5.16$ (m, 2H, H-1), 4.53 (t, 4H, $J=4.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$ '), 4.04 (d, $2 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{H}-5$), $3.79-3.75$ (m, 4H, H-6''), 3.70-3.50 (m, 526H, H-2, H-3, H-4, 520*PEG), 3.45-3.33 (m, 4H, H-2''), 2.44 (s, 6H, Me); ${ }^{13} \mathrm{C}$ NMR (500 MHz , MeOD) $\delta: 171.7$, 163.1, 155.6, 155.3, 154.0, 150.8 (C_{IV}), 144.1 (C_{IV}), 141.9 (C-3'’), 135.9 (C_{IV}), 133.2 (C-5a), 126.9 (C$\left.5^{\prime}\right), 125.7$ (C-4''), 124.2 (C-3'), 118.9 (C-6'), 116.5 (C C_{IV}), 116.1 (C-6a), 113.2 (C-2a), 106.4 (C-8a), 102.4 (C-1), 77.4 (C-2), 76.7 (C-5), 75.6 (C-1''), 73.7 (C-3), 72.7 (C-4), 71.6 (PEG), 70.4 (C-6''), 51.5 (C-5''), 33.6 (C-2''), $18.6\left(\mathrm{CH}_{3}\right)$; HRMS (ES-) m/z calcd for $\mathrm{C}_{318} \mathrm{H}_{574} \mathrm{~N}_{10} \mathrm{O}_{157}: 7045.7239$ found 7045.7138.

Compound 6

To a solution of COSS-N ${ }_{3}(10 \mathrm{mg}, 3.97 \mu \mathrm{~mol})$ and $\mathbf{1 0}(20.5 \mathrm{mg}, 34.99 \mu \mathrm{~mol})$ in dioxane-water $(4 \mathrm{~mL}$, $4-1$) was added copper sulfate ($2.40 \mathrm{mg}, 9.54 \mu \mathrm{~mol}$) and sodium ascorbate ($3.78 \mathrm{mg}, 10.08 \mu \mathrm{~mol}$). The mixture was stirred overnight at room temperature and Quadrasil ${ }^{\circledR}$ MTU ($25 \mathrm{mg}, 25 \mu \mathrm{~mol}$) was added for trapping the residual copper. After 30 minutes the reaction was filtered through a Celite pad and the filtrate was evaporated under reduced pressure. The residue was purified by Sephadex LH-20 $\left(\mathrm{H}_{2} 0 /\right.$ THF: $\left.1 / 1\right)$ to afford $\mathbf{6}(16.6 \mathrm{mg}, 58 \%)$ as a yellowish solid.
${ }^{1}{ }^{H}$ NMR (500MHz, $\left.\mathrm{D}_{2} \mathrm{O} / \mathrm{THF}-\mathrm{d} 8\right) ~ \delta: ~ 7.86-7.75$ (m, 16H, H-3', H-4'’), 7.75-7.60 (m, 16H, H-5a, H-5'), 7.60-7.46 (m, 16H, H-8a, H-6'), 7.40-7.30 (m, 8H, H-6 a_{a}, 6.18-6.10 (m, 8H, H-2a), 6.03-5.95 (m, 8H, H1''), 5.22-5.10 (m, 8H, H-1), 4.54-4.48 (m, 16H, H-5''), 3.92-3.79 (m, 40H, H-5, H-6', H-7''), 3.59-
 (m, 32H, H-8', H-9''), 2.41 (br s, 24H, Me), 1.13-0.96 (m, 16H, H-10'); ${ }^{13} \mathrm{C}$ NMR (500 MHz , $\left.\mathrm{D}_{2} \mathrm{O} / \mathrm{THF}-\mathrm{d} 8\right) \delta: 173.9,162.3,155.3,154.8,153.8,150.9\left(\mathrm{C}_{\text {IV }}\right), 143.5\left(\mathrm{C}_{\mathrm{IV}}\right), 140.8(\mathrm{C}-3$ '' $), 135.3\left(\mathrm{C}_{\mathrm{IV}}\right)$, 133.7 (C-5a), 126.8 (C-5'), 125.5 (C-4''), 124.1 (C-3'), 119.0 (C-6'), 115.9 (C (CV), 115.7 (C-6a), 113.0 (C-2a), 105.9 (C-8a), 101.9 (C-1), 76.8 (C-2), 75.5 (C-1’’), 74.0 (C-3), 72.6 (C-4), 71.0, 70.9 (PEG), 70.2 (C-5), 68.2 (C-6'), 64.7 (C-7''), 51.7 (C-8''), 51.1 (C-5'’), 47.3 (C-9'’), 33.2 (C-2'’), $18.7\left(\mathrm{CH}_{3}\right)$, 14.7 (C-10').

Experimental procedures (molecular dynamic simulations)

Elongated structures of compounds 2 to 5 were generated with the "Ligand Maker and Modeler" tool of the CHARMM-GUI webpage [1,2]. A set of folded structures were generated, minimized and ranked according to their energy with the ConfGen application of the SCHROEDINGER suite [3,4] using standard parameters. For compound 2 and 3 the three highest ranking folded structures and for compound 4 and 5 the five highest ranking structures were used to perform 20-ns long molecular dynamics simulations.
All molecular dynamics trajectories were generated in the isothermal-isobaric ensemble at 300 K with the program NAMD2.12 [5] using the CHARMM36 force field [6,7]. Long-range electrostatic interactions were calculated using the particle-mesh Ewald method [8]. A smoothing function was applied to truncate short-range electrostatic interactions. The Verlet-I/r-RESPA multiple time-step propagator [9] was used to integrate the equation of motions using a time step of 2 and 4 fs for shortand long-range forces, respectively. All bonds involving hydrogen atoms were constrained using the Rattle algorithm [10]. Missing force-field parameters were generated using the "Ligand Maker and Modeler" tool of the CHARMM-GUI webpage [1,2]. After solvation of the system, first a 2.5 ns long equilibration of the solvent (water and ions) and second an unrestrained 2.5 ns long equilibration was performed. Afterwards a 20 -ns long production run was carried out for each of the systems. From all simulations the average distance d (as in Graph 1 in the main text) between the two glucuronide ligands was computed as the average over the distances between the centre of mass of the heavy atoms of the sugar ring of the glucuronide ligand determined for 10.000 snapshots extracted each 0.002 ns from the generated trajectories using VMD [11].

1. S. Jo, T. Kim, V.G. Iyer, and W. Im (2008) CHARMM-GUI: A Web-based Graphical User Interface for CHARMM. J. Comput. Chem. 29:1859-1865
2. S. Kim, J. Lee, S. Jo, C.L. Brooks III, H.S. Lee, and W. Im (2017) CHARMM-GUI Ligand Reader and Modeler for CHARMM Force Field Generation of Small Molecules. J. Comput. Chem. 38:18791886
3. Watts, K.S.; Dalal, P.; Murphy, R.B.; Sherman, W.; Friesner, R.A.; Shelley, J.C., "ConfGen: A Conformational Search Method for Efficient Generation of Bioactive Conformers," J.Chem. Inf. Model., 2010, 50, 534-546
4. Schrödinger, LLC, New York, NY, 2017.
5. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 17811802.
6. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671-690.
7. Guvench, O.; Mallajosyula, S.S.; Raman, E.P.; Hatcher, E.; Vanommeslaeghe, K.; Foster, T.J.; Jamison, F.W.; Mackerell, A.D. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. Chem. Theory Comput. 2011, 7, 3162-3180.
8. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An $N \cdot \log (\mathrm{~N})$ method for Ewald sums in large systems. J. Chem. Phys. 1993.

Enzyme kinetics study using a fluorescence assay.

The enzymatic activity was measured using the fluorescence generated after the rupture of glycosidic bond of each substrate. Each assay were performed at $37{ }^{\circ} \mathrm{C}$ in PBS buffer (75 mM), $\mathrm{pH} 6,5$. To determine the kinetics parameters of β-glucuronidase from E. coli., purchased from Sigma Aldrich, 10 $\mu \mathrm{L}$ of enzyme at 96 nM ([GUS] $]_{\text {final }}=9,6 \mathrm{nM}$) were diluted in $40 \mu \mathrm{~L}$ of PBS buffer in a black 96 -well microtitre plate and were incubated for 15 minutes at $37^{\circ} \mathrm{C}$. After addition of $50 \mu \mathrm{~L}$ of adequate concentration of the different substrates in PBS buffer, the fluorescence was directly monitored throughout the reaction each minutes during 30 min at $37^{\circ} \mathrm{C}$. FL signals were detected at an excitation wavelength of 355 nm and emission at 460 nm . Relative fluorescence units (RFU) were converted to the concentration of the product 4-methylumbelliferone (4-MU) according to the 4-MU standard curve. K_{m} and $V_{\max }$ values for each substrate were determined using Origin software to curve-fit the MichaelisMenten plot using a single site $(\mathrm{n}=1)$ nonlinear Hill fit.
$V o=\frac{V_{\max } \cdot[S]^{n}}{K_{m}^{n}+[S]^{n}}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz, $298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of $\mathbf{9}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1 0}$

