Supporting information of

Synthesis of Pyrrolo[3`,2`:4,5][1,3]diazepino[2,1,7-*cd*]pyrrolizine Derivative from Dicyanovinylene-bis(*meso*-aryl)dipyrrin

Ji-Young Shin*

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Fax: 81-52-747-6771; E-mail: jyshin@chembio.nagoya-u.ac.jp

Content

1.	NMR spectra of 2 and 3	page 2
2.	Mass spectra of 2 and 3	page 7
3.	Crystal structures of 4, 2, and 3	page 8
4.	Absorption spectra of 2, 3 _{ox} , and 3 _{red.}	page 10

1. NMR spectra of 2 and 3

Figure S1. ¹H NMR (300 MHz) spectrum of 3 in CDCl₃.

Figure S2. HH COSY (F1 = F2 = 300 MHz) NMR spectrum of 3 in CDCl₃.

Figure S4. ¹³C NMR (125.77 MHz) spectrum of 3 in CDCl₃.

Figure S6. Comparison of carbon peaks between 13 C (a and c) and DEPT (b and d) NMR (125.77 MHz) spectra of **3** in CDCl₃.

Figure S8. HH COSY (F1 = F2 = 300 MHz) NMR spectrum of 2 in CDCl₃.

Figure S9. ¹⁹F NMR (282.38 MHz) spectrum of **2** in CDCl₃.

2. Mass spectra of 2 and 3.

Figure S10. MALDI-TOF mass spectra of **3** (a and b) and **2** (c and d): measured (a and c) and calculated (b and d) masses. (b) and (d) are for $[\mathbf{3} + \mathbf{H}]^+$ and $[\mathbf{2}]^+$.

Figure S11. High resolution APCI mass spectrum of 3.

3. Crystal structures of 4, 2, and 3.

Figure S12. Crystal structure of acyclic Ni^{II} complex **4** (CCDC No. = 1520688): top view (a) and side view (b). *meso*-Pentafluorophenyl groups were omitted for clarity. Thermal ellipsoids are scaled at the 50% probability level. Crystal data of **4**: $(C_{68}H_{20}F_{20}N_{12}Ni_2)_2 \cdot (N_6Ni_{14}) M_r = 2973.51, T = 93(2) K$, Crystal size = 0.04 x 0.03 x 0.03 mm³, Mo radiation, triclinic, space group *P*-1 (#2), *a* = 16.0744(7) Å, *b* = 16.7126(6) Å, *c* = 26.6119(10) Å, α = 105.829(3)°, β = 103.161(4)°, γ = 97.511(3)°, *V* = 6554.0(5) Å³, *Z* = 2, *P*_{calcd.} = 1.507 g/cm, *R*₁(F) = 0.1124 (I > 2(*I*)), *wR*₂(F²) = 0.3732 (all), GoF = 1.023, Data completeness = 0.965.

Figure S13. Crystal structure of **2**: top view (a) and side views (b). Thermal ellipsoids are scaled at the 50% probability level.

Figure S14. Unit-packing diagrams of **3**: Space-filling structures of top (a) and side (b) views and stick model structure showing a packing pattern. The unit presented a combination of two sets of enantiomers: (d) and (f) are the top view for each of the enantiomers and e and g are their side views, respectively.

4. Absorption spectra of 2, 3_{ox}, and 3_{red.}

Figure S16. UV Absorption spectrum of $\mathbf{2}$ in CH_2CI_2 .

Figure S17. Examine of absorption dependence on a chemical oxidation with DDQ: UV absorption spectra of **3** in CH_2Cl_2 , before (-----) and after (------) addition of excess DDQ. Any significant difference between two samples was observed: The solutions exhibited same green in color as well as exactly same retention time on TLC plate (silica gel with neat CH_2Cl_2).

Figure S18. Examine of absorption dependence on a chemical reduction with NaBH₄: UV absorption spectra of **3** in CH₃OH, before (——) and after (^{———}) addition of excess NaBH₄. The initial green was changed to violet in color. Retention time on TLC plate increased with the chemical reduction (silica gel with CH_2Cl_2 including tiny amount of CH_3OH).