Electronic supplementary information for

Renal-Clearable Hyaluronic Acid Functionalized NaGdF₄ Nanodots with

Enhanced Tumor Accumulation

Yining Yan^{a,b}, Lei Ding^a, Lin Liu^{*a}, Murad M.A. Abualrejal^{b,c}, Hongda Chen^{*b,c} and Zhenxin Wang^b.

^aDepartment of Radiology China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, P. R. China

^bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

^cSchool of Applied Chemical Engineering, University of Science and Technology of China, Road Baohe District, Hefei, Anhui, 230026, P. R. China.

*Corresponding Authors, *E-mails: LiuLin99@jlu.edu.cn(LL),

chenhongda@ciac.ac.cn (HC).

1 Additional Experimental Section

2 Additional Figures

3 Additional Tables

4 Additional References

1 Additional Experimental Section

Synthesis of NaGdF₄ ND@OAs

The NaGdF₄ ND@OAs were synthesized by previously reported methods.^{S1-S3} In brief, 1.5 mmol GdCl₃ aqueous solution was added into a three-neck 100 mL round-bottom flask, and then the solution was heated to 100 °C for drying. Subsequently, 6 mL oleic acid (OA) and 22.5 mL 1-octadecence (ODE) were added into the flask, then heated to 140 °C under vacuum until the solution get clear, after which it was cooled down to the room temperature. Then 15 mL methanol solution containing 6 mmol (0.15 g) NH₄F and 3.75mmol (0.233 g) NaOH were added dropwise, and it was vigorously stirred at the temperature of 50 °C overnight (12~15 h). Turn up the temperature to 70 °C~80 °C to evaporate most of methanol and then remove the methanol completely under vacuum. The next step is to heat the solution rapidly to 250 °C (~10 °C/min). After being stirred at 250 °C for 10 minutes under a gentle argon flow, the temperature was turned down to room temperature. Then the NaGdF₄ ND@OAs were precipitated using ethanol, centrifuged (10000 rpm, 10 min), and purified 3 times with ethanol, finally dispersed in 5 mL cyclohexane.

2 Additional Figures

Figure S1 The XPS spectra of (a) NaGdF₄ ND@OAs, (b) NaGdF₄ ND@tryptone and (c) NaGdF₄ ND@HAs, respectively.

Figure S2 The EDS analysis of $NaGdF_4 ND@OAs$, $NaGdF_4 ND@tryptone$ and $NaGdF_4 ND@HAs$, respectively.

Figure S3 The FTIR of NaGdF₄ ND@OAs (black line), NaGdF₄ ND@tryptone (blue line) and NaGdF₄ ND@HAs (red line), respectively.

Figure S4 (a) MDA- MB-231, (b) MCF-7 and (c) 293 cell viabilities as a function of concentrations of NaGdF₄ ND@tryptone or NaGdF₄ ND@HAs. Error bars mean standbard deviations (n=5).

Figure S5 In vivo MR images of (a) liver, (b) kidney and (c) bladder of healthy Balb/c mice after intravenous injection of NaGdF₄ ND@HAs at different timed intervals (0 (pre-injection), 1, 2, 4, 8, 12, 24 and 48 h) of post-injection, respectively.

Figure S6 TEM micrograph of NaGdF₄ ND@HAs which were found in urine of the mouse.

Figure S7 The body weights of healthy Balb/c mice (n = 3) after treated with 0.9 wt% NaCl solution (control) and 10 mg Gd kg⁻¹ body NaGdF₄ ND@HAs, respectively.

Figure S8 (a) H&E staining and (b) anti-CD44v6 staining section of tumor tissue from the mice. The tumor cells were fully stained by the anti-CD44v6 antibody. The scale bars are 200 μ m.

3 Additional Tables

Table S1. The blood hematology analysis of healthy mouse at 1-day and 30-day postinjection of NaGdF₄ ND@HAs (10 mg Gd kg⁻¹ body).

Hematological	Units	Control	1 d	30 d
WBC	×10 ⁹ /L	3.87 ± 0.24	3.70 ± 0.28	3.56 ± 0.30
Neu	%	25.00 ± 2.03	26.00 ± 2.83	24.00 ± 2.36
LY	%	68.21 ± 3.48	68.35 ± 5.25	69.22 ± 4.83
RBC	$\times 10^{12}/L$	9.40 ± 0.47	10.03 ± 0.50	9.55 ± 0.44
HGB	g/L	155.00 ± 10.50	151.00 ± 8.79	160.00 ± 7.58
НСТ	Ľ/L	0.49 ± 0.03	0.52 ± 0.03	0.49 ± 0.04
MCV	fL	51.70 ± 5.82	52.80 ± 4.62	50.90 ±4.79
MCH	pg	16.70 ± 1.44	13.90 ± 1.95	16.80 ± 0.83
MCHC	g/L	351.00 ±8.55	329.80	332.90 ± 15.0
	C		±11.56	
RDW-CV	%	15.70 ± 0.77	15.80 ± 0.83	16.20 ± 0.81
RDW-SD	fL	27.50 ± 1.23	27.10 ± 1.35	28.00 ± 1.40
PLT	×10 ⁹ /L	430.00 ± 50.51	457.00	439.00
			±44.99	±45.95
MPV	fL	6.90 ± 0.53	5.90 ± 0.69	6.70 ± 0.68
PDW	fL	15.20 ± 1.27	15.70 ± 0.98	15.40 ± 1.12
РСТ	%	0.29 ± 0.01	0.29 ± 0.01	0.30 ± 0.01

4 Additional References

[S1] N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. S. Prosser and F. C. J. M. van Veggel,

Chem. Mater., 2011, **23**, 3714-3722.

[S2] F. Liu, X. He, J. Zhang, H. Zhang and Z. Wang, Small, 2015, 11, 3676-3685.

[S3] H. Chen, X. Li, F. Liu, H. Zhang, Z. Wang., Mol. Pharmaceutics, 2017, 14, 3134–3141.