## Synthesis of monodispersed M-CeO2/SiO2 nanoparticles and formation of

## hydrophobic UV absorption coating therefrom

Su Xunwen<sup>a</sup>, Zhu Liqun<sup>a</sup>, Li Weiping<sup>a</sup>, Liu Huicong<sup>\*a</sup>, Ye Hui<sup>b</sup>

Key Laboratory of Aerospace Materials and Performance (Ministry of Education),

School of Materials Science and Engineering, Beihang University, Beijing 100191,

China

\*E-mail address: liuhc@buaa.edu.cn

Tel: +86 1082317113. Fax: +86 1082317113.



Fig. S1. SEM of  $CeO_2@SiO_2$  nanoparticles with different  $m(Ce(NO_3)_3 \bullet 6H_2O)/m(SiO_2)$  ratio, (a) 1.5:1; (b) 2:1; (c) 2.5:1; (d) 3:1; (d) 4:1.



Fig. S2 (a) SEM imagine of PFA10, (b) a section view of PFA10. A large number of white nanoparticles can be seen uniformly distributed in the coating

| Element | Area 1 | Area 2 | Area 3 |
|---------|--------|--------|--------|
| Si      | 38.37  | 38.18  | 38.39  |
| Ce      | 29.27  | 29.76  | 29.05  |
| 0       | 32.36  | 32.06  | 32.56  |

Table S1 shows the EDS of M-CeO<sub>2</sub>@SiO<sub>2</sub>, in which three measurements were made to ensure the accuracy of results. As shown in table S1, the average of atomic ratio of Si : Ce in M-CeO<sub>2</sub>@SiO<sub>2</sub> is about 4.391. That means the mass fraction of CeO<sub>2</sub> in M-CeO<sub>2</sub>@SiO<sub>2</sub> is approximately 39.5% according the formula below:

$$W(CeO_2) = \frac{M(CeO_2) \times 1}{M(CeO_2) \times 1 + M(SiO_2) \times 4.391}$$