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Figure S1. 1tH-NMR spectrum of L1 in D20 at 298 K.
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Figure S2. 13C-NMR spectrum of L1 in D20 at 298 K.
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Figure S4. 1tH-NMR spectrum of L2 in D20 at 298 K.
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Figure S5. 13C-NMR spectrum of L2 in D20 at 298 K.
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Figure S7. Experimental (red, continuous line) and theoretical (discrete red peaks)
diffractogram of the boehmite nanoparticles powder.
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Figure S8. Size dispersion diagram of the boehmite nanoparticles obtained by DLS.
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Figure S10. Experimental {-potential of the oxidic nanoparticles. The continuous lines
correspond to the non-functionalised nanoparticles, while the dotted lines correspond to
the NPs functionalised with Cu2L.1 and the dotted-dashed ones to the NPs functionalised
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Figure S11. 1H-NMR spectra of the three BNP-L1 samples in D20 at 298 K.
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Figure S12. Calibration and interpolation of L1 anchoring to boehmite nanoparticles by
NMR determination.
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Figure S13. 1H-NMR spectra of the three SNP-L1 samples in D20 at 298 K.
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Figure S14. Calibration and interpolation of L1 anchoring to silica nanoparticles by
NMR determination.
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Figure S15. 1H-NMR spectra of the three BNP-L2 samples in D20 at 298 K.
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Figure S16. Calibration and interpolation of L2 anchoring to boehmite nanoparticles by

NMR determination.
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Figure S17. 1H-NMR spectra of the three SNP-L2 samples in D20 at 298 K.
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NMR determination.
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Figure S20. Distribution diagram of L4 as a function of the pH in aqueous solution.
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Figure S28. DFT optimized structure of Cuz+:L1 complex at physiological pH (7.40): A)
Cu2+:L11:1, B) Cu2+:L1 2:1.
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Figure S29. Distribution diagram of the Cu2+:L1 1:1 system as a function of the pH in
aqueous solution.
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Figure S35. Cyclic voltammograms at glassy carbon electrode of 10-3 M solutions of A)
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IV. Tables

Table S1. Concentration of the grafted ligand, Cu2+ complexation capability and
(-potential values determined for the different nanoparticle systems. All measurements
were carried out in 10-4 M NaClOa at pH 7.4.

System

[L] (mol/gne)  [Cuz+] (mol/gne)  E-potential (MV)

BNP
BNP-L1
BNP-L2
SNP
SNP-L1
SNP-L2

3.5(4)-10-
2.20(2)-10-4
2.3(2)-10-
3.3(3)-10

6.8(6)-10-5
4.2(8)-10-4
4.4(4)-10s
6.0 (4)-10-

32.1(8)
23.9(2)
35(2)
-18.1(9)
-14.9(2)
-5.6(2)

a) Values in parenthesis are standard deviations in the last significant figure.

Table S2. Logarithms of the stepwise protonation constants for L3 and L4 obtained
by potentiometric measurements.1 The constants were determined in 0.15 M NaClOa4

at298.1 £ 0.1 K.

Reaction

L3

L4

L+ HY 2 HL*

HL* + H* 2 H,1**
H,L?* + HY 2 HyL3*
HyL3% + HY 2 H,L**
HyL** + HY 2 Hg L5
HsL>* + HY 2 H L8

log Bb

10.67(1) 10.67(1)

9.85(1)
8.60(1)
7.49(1)
7.12(1)
4.99(2)
48.72

9.41(1)
8.24(5)
7.35(7)
6.98(9)
5.87(2)
48.52

a Values in parentheses are standard deviations in the

last significant figure.
b Log B = X logK
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Table S3. Logarithm of the equilibrium constants for the interaction of Cuz+ with L3
and L4 obtained by potentiometric measurements.1 The logarithms constants were
determined in 0.15 M NaClOs at 298.1 + 0.1 K.

Entry Reaction L3 L4

1 [CuH;L)°>* + HY 2 [CuH,L]®* 4.69(2) 3.82(2)
2 [CuH,L1** + H* 2 [CuH;L]>* 4.65(2)  6.13(2)
3 [CuHL]3* + H* 2 [CuH,L]** 7.56(3)  7.44(2)
4 [CuL)?* + HY 2 [CuHL]3** 9.53(3) 9.75(3)
5 L + Cu?* 2 [CuL]?* 18.34(3) 17.22(6)
6 [CuL]?* + Cu?* 2 [Cu,L]** 11.69(3) 7.96(6)
7 [Cu,L]** + H,0 2 [Cu,L(OH)]?* + H*  -7.72(3) -7.26(6)

a Values in parentheses are standard deviations in the last significant figure.

Table S4. Logarithms of the equilibrium constants for the interaction of Zn2+ with L12
and L2 obtained by potentiometric measurements. The logarithms constants were
determined in 0.15 M NaClOs at 298.1 + 0.1 K.

Entry Reaction L1s L2

1 [ZnH,(H_{L)13* + H* 2 [ZnH;(H_,L)]** 6.32(3) -

2 [ZnH(H_{L))?* + 2H* 2 [ZnH5(H_,L)]** 12.78(2) -

3 [ZnH(H_{L))** + H* 2 [ZnH,(H_,{L)]3* - 6.96(3)
4 [Zn(H_{L)]* + H* 2 [ZnH(H_,L)]** 7.83(1) 9.76(2)
5 Zn?*t + H_L” 2 [Zn(H_,L)]* 14.65(2) 9.84(6)
6 [Zn(H_,L)]* + H,0 2 [Zn(H_,L)(OH)] + H* -9.96(3) -

7 [Zn(H_,L)(OH)] + H,0 2 [Zn(H_,L)(OH),]” + H* -10.93(3) -

8 2Zn%* + [(H_1L)]* + H,0 2 [Zny(H_{L)(OH))** + H* 11.14(2)  6.71(6)
9 2Zn%* + [(H_{L)]* + 2H,0 2 [Zn,(H_,L)(OH)2]** + H* 2.33(3) -3.03(6)
10 2Zn%% + [(H_{L)]* + 3H,0 2 [Zn,(H_,L)(OH)3]* + H*  -7.92(4)

11 In?* + [Zn(H_{L)]* + H,0 2 [Zny(H_L)(OH)]>** + H*  -351(3) -3.13(3)
12 [Zny(H_{L)(OH)]** + H,0 2 [Zn,(H_,L)(OH),]* + H*  -8.81(3) -9.74(6)
13 [Zny(H_1L)(OH),]?* + H,0 2 [Zny(H_;L)(OH)3] + H*  -10.25(4) -

a Values in parentheses are standard deviations in the last significant figure.
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Table S5. Logarithm of the equilibrium constants for the interaction of Znz2+ with L3
and L4 obtained by potentiometric measurements.1 The logarithms constants were
determined in 0.15 M NaClOs at 298.1 + 0.1 K.

Entry Reaction L3 L4

1 [ZnH,L)** + HY 2 [ZnH;L]>* 6.97(4) -

2 [ZnHL** + HY 2 [ZnH,L]** 6.65(6)  6.99(3)

3 [ZnL)** + H* 2 [ZnHL)3* 9.28(3)  8.24(4)

4 Zn?* + L 2 [ZnL]** 10.76(4) 10.32(4)
5 Zn?** + L+ H,0 2 [ZnL(OH)]* + H™ 0.01(5)  0.21(6)

6 [(ZnL]?** + H,0 2 [ZnL(OH)]* + H* -10.75(7) -10.11(7)
7 27n%* + L 2 [Zn,L]** 15.69(5) -

8 Zn?* + [ZnL)?** 2 [Zn,L]* 4.93(6) -

9 2Zn%*t + L + H,0 2 [Zn,L(OH) 3t + H* 8.10(2)  6.36(6)

10 2Zn%* + L + 2H,0 2 [Zn,L(OH),)>* + H* -1.80(2)  -2.03(1)
11 [Zn,L)** + H,0 2 [Zn,L(OH)]3* + H* -7.59(5) -

12 [Zn,L(OH)]** + H,0 2 [Zn,L(OH),)>" + H* -9.90(3) -8.39(6)

a Values in parentheses are standard deviations in the last significant figure.

Table S6. Logarithm of the equilibrium constants for the interaction of Cuz+ and
Zn2+ with L3 and L4 obtained by potentiometric measurements.1 The logarithms
constants were determined in 0.15 M NaClOa4 at 298.1 + 0.1 K.

Entry Reaction L3 L4

4 [CuZnL]** + H* 2 [CuZnHL]>* - 30.23(6)
5 Cu?t + Zn?* + L 2 [CuZnL]*t 23.26(9) -

6 Cu?* + Zn?* + L + H,0 2 [CuZnL(OH)]3* + H* 18.57(2) 14.55(3)
7 Cu?* + Zn?* + L + 2H,0 2 [CuZnL(OH),)** + 2H* 5.34(6) 6.24(3)

a Values in parentheses are standard deviations in the last significant figure.
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