Supporting Information

A step forward in the development of SOD mimetic nanozymes: the effect of the charge of the surface on antioxidant activity

Álvaro Martínez-Camarena, José M. Llinares, Antonio Domenech-Carbó, Javier Alarcón, Enrique García-España.

Contents

I. Figures

Figure S1. $1 \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L 1}$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S2. 13C-NMR spectrum of L1 in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S3. Mass spectrum of L1.
Figure S4. $1 \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L} \mathbf{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S5. ${ }_{13} \mathrm{C}$-NMR spectrum of $\mathbf{L} 2$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S6. Mass spectrum of L2.
Figure S7. Experimental (red, continuous line) and theoretical (discrete red peaks) diffractogram of the boehmite nanoparticles powder.

Figure S8. Size dispersion diagram of the boehmite nanoparticles obtained by DLS.
Figure S9. Experimental ζ-potential of the oxidic nanoparticles. The continuous lines correspond to the non-functionalised nanoparticles, while the dotted lines correspond to the NPs functionalised with L1 and the dotted-dashed ones to the NPs functionalised with L2.

Figure S10. Experimental ζ-potential of the oxidic nanoparticles. The continuous lines correspond to the non-functionalised nanoparticles, while the dotted lines correspond to the NPs functionalised with $\mathrm{Cu}_{2} \mathbf{L} \mathbf{1}$ and the dotted-dashed ones to the NPs functionalised with $\mathrm{Cu}_{2} \mathbf{L} 2$.

Figure S11. 1H-NMR spectra of the three BNP-L1 samples in D2O at 298 K .
Figure S12. Calibration and interpolation of $\mathbf{L} 1$ anchoring to boehmite nanoparticles by NMR determination.

Figure S13. $1 \mathrm{H}-\mathrm{NMR}$ spectra of the three SNP-L1 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S14. Calibration and interpolation of $\mathbf{L} 1$ anchoring to silica nanoparticles by NMR determination.

Figure S15. ${ }_{1} \mathrm{H}-\mathrm{NMR}$ spectra of the three BNP-L2 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S16. Calibration and interpolation of $\mathbf{L} 2$ anchoring to boehmite nanoparticles by NMR determination.

Figure S17. ${ }_{1} \mathrm{H}-\mathrm{NMR}$ spectra of the three SNP-L2 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .
Figure S18. Calibration and interpolation of $\mathbf{L} 2$ anchoring to silica nanoparticles by NMR determination.

Figure S19. Distribution diagram of $\mathbf{L 3}$ as a function of the pH in aqueous solution.
Figure S20. Distribution diagram of $\mathbf{L 4}$ as a function of the pH in aqueous solution.
Figure S21. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} 11: 1$ system as a function of the pH in aqueous solution. The UV-Vis spectroscopic parameters of the pyridine system (red dots) and d-d transition band (blue dots) are overlaid.

Figure S22. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} \mathbf{2} 1: 1$ system as a function of the pH in aqueous
solution.
Figure S23. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} \mathbf{\mathbf { 3 }} 1: 1$ system as a function of the pH in aqueous solution.

Figure S24. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L 4} 1: 1$ system as a function of the pH in aqueous solution.

Figure S25. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} \mathbf{3} 2: 1$ system as a function of the pH in aqueous solution.

Figure S26. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L 4} 2: 1$ system as a function of the pH in aqueous solution.

Figure S27. Representation of pCu_{2+} vs. pH for $\mathbf{L 1}$ (brown line), $\mathbf{L 2}$ (blue line), $\mathbf{L 3}$ (green line) and $\mathbf{L 4}$ (yellow line) $\left(\left[\mathrm{Cu}_{2}+\right]_{\text {tot }}=2 \cdot 10-6 \mathrm{M} ;[\mathrm{L}]_{\text {tot }}=10-5 \mathrm{M}\right)$.

Figure S28. DFT optimized structure of $\mathrm{Cu}_{2+}: \mathbf{L 1}$ complex at physiological pH (7.40): A) $\left.\mathrm{Cu}_{2+}: \mathbf{L 1} 1: 1, \mathrm{~B}\right) \mathrm{Cu}_{2+}: \mathbf{L} 12: 1$.
Figure S29. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} \mathbf{L 1} 1: 1$ system as a function of the pH in aqueous solution.

Figure S30. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} \mathbf{2} 1: 1$ system as a function of the pH in aqueous solution.

Figure S31. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} \mathbf{3} 1: 1$ system as a function of the pH in aqueous solution.

Figure S32. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} 41: 1$ system as a function of the pH in aqueous solution.

Figure S33. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L} \mathbf{L 3} 2: 1$ system as a function of the pH in aqueous solution.

Figure S34. Distribution diagram of the $\mathrm{Cu}_{2+}: \mathbf{L 4} 2: 1$ system as a function of the pH in aqueous solution.

Figure S35. Cyclic voltammograms at glassy carbon electrode of 10-3 M solutions of A) CuL 1,
B) $\left.\mathrm{Cu}_{2} \mathbf{L} 1, \mathrm{C}\right) \mathrm{CuL2}$, D) $\mathrm{Cu}_{2} \mathbf{L} 2$ in $0.15 \mathrm{NaClO}_{4}$ aqueous solutions at pH 7.4 . Potential scan rate 50 mV s-1. Semi-derivative deconvolution of data was performed to increase peak resolution.

Figure S36. Cyclic voltammograms at glassy carbon electrode of $10-3 \mathrm{M}$ solutions of Cu_{2+} (aq) plus BNP-L2 in A) 1:1 and B) 2:1 molar ratios, in $0.15 \mathrm{NaClO}_{4}$ aqueous solutions at pH 7.4. Semi-derivative deconvolution of data was performed to increase peak resolution.

Figure S37. Thermochemical cycle for the NP-complex interaction and electrochemistry.
Figure S38. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-L2.

Figure S39. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-BNP-L2.

Figure S40. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-SNP-L1.

Figure S41. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu_{2}-SNP-L2.

Figure S42. Representation of the catalytic constant corresponding to the systems: a) $\mathbf{C u}-\mathbf{L 5}$, Cu-L6, Cu-L7, Cu-L8, Cu2-L3, Cu2-L1, Cu2-L2, Cu2-L9, Cu2-L10, Cu2-L4, Cu2-SNP-L1, Cu2-SNP-L2, Cu2-BNP-L2, Cu2-BNP-L1.1-3

Figure S43. Representation of the variation of the absorbance intensity with time at 219 nm for $\mathrm{H}_{2} \mathrm{O}_{2}$ solutions with the presence of the ligands, both functionalised an free in solution. Yellow line corresponds to the EUK-134 reference. 1

II. Tables.

Table S1. Concentration of the grafted ligand, Cu_{2+} complexation capability and ζ-potential values determined for the different nanoparticle systems. All measurements were carried out in $10-4 \mathrm{M} \mathrm{NaClO}_{4}$ at pH 7.4 .

Table S2. Logarithms of the stepwise protonation constants for $\mathbf{L 3}$ and $\mathbf{L 4}$ obtained by potentiometric measurements. 1 The constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm$ 0.1 K.

Table S3. Logarithm of the equilibrium constants for the interaction of Cu_{2+} with $\mathbf{L} \mathbf{3}$ and $\mathbf{L 4}$ obtained by potentiometric measurements. 1 The logarithms constants were determined in 0.15 $\mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Table S4. Logarithms of the equilibrium constants for the interaction of $\mathrm{Zn} 2+$ with $\mathbf{L} 1$ and $\mathbf{L} \mathbf{2}$ obtained by potentiometric measurements. The logarithms constants were determined in 0.15 $\mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Table S5. Logarithm of the equilibrium constants for the interaction of Zn_{2+} with $\mathbf{L} \mathbf{3}$ and $\mathbf{L} 4$ obtained by potentiometric measurements. 1 The logarithms constants were determined in 0.15 $\mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Table S6. Logarithm of the equilibrium constants for the interaction of Cu_{2+} and Zn_{2+} with $\mathbf{L} \mathbf{3}$ and $\mathbf{L 4}$ obtained by potentiometric measurements. 1 The logarithms constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

III. References.

I. Figures

Figure S1. 1H-NMR spectrum of $\mathbf{L} 1$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Figure S3. Mass spectrum of L1.

Figure S4. $1 \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L} 2$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Figure S5. 13C-NMR spectrum of $\mathbf{L} 2$ in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Figure S6. Mass spectrum of L2.

Figure S7. Experimental (red, continuous line) and theoretical (discrete red peaks) diffractogram of the boehmite nanoparticles powder.

Figure S8. Size dispersion diagram of the boehmite nanoparticles obtained by DLS.

Figure S9. Experimental ζ-potential of the oxidic nanoparticles. The continuous lines correspond to the non-functionalised nanoparticles, while the dotted lines correspond to the NPs functionalised with $\mathbf{L} 1$ and the dotted-dashed ones to the NPs functionalised with L2.

Figure S10. Experimental ζ-potential of the oxidic nanoparticles. The continuous lines correspond to the non-functionalised nanoparticles, while the dotted lines correspond to the NPs functionalised with $\mathrm{Cu}_{2} \mathbf{L} 1$ and the dotted-dashed ones to the NPs functionalised with $\mathrm{Cu}_{2} \mathrm{~L} 2$.

Figure S11. 1H-NMR spectra of the three BNP-L1 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Figure S12. Calibration and interpolation of L1 anchoring to boehmite nanoparticles by NMR determination.

Figure S13. $1 \mathrm{H}-\mathrm{NMR}$ spectra of the three SNP-L1 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Figure S14. Calibration and interpolation of $\mathbf{L 1}$ anchoring to silica nanoparticles by NMR determination.

Figure S15. $1 \mathrm{H}-\mathrm{NMR}$ spectra of the three BNP-L2 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K .

Figure S16. Calibration and interpolation of $\mathbf{L} \mathbf{2}$ anchoring to boehmite nanoparticles by NMR determination.

Figure S17. 1H-NMR spectra of the three SNP-L2 samples in $\mathrm{D}_{2} \mathrm{O}$ at 298 K.

Figure S18. Calibration and interpolation of $\mathbf{L} 2$ anchoring to silica nanoparticles by NMR determination.

Figure S19. Distribution diagram of $\mathbf{L 3}$ as a function of the pH in aqueous solution.

Figure S20. Distribution diagram of $\mathbf{L 4}$ as a function of the pH in aqueous solution.

Figure S21. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} 11: 1$ system as a function of the pH in aqueous solution. The UV-Vis spectroscopic parameters of the pyridine system (red dots) and d-d transition band (blue dots) are overlaid.

Figure S22. Distribution diagram of the $\mathrm{Cu}_{2}+\mathbf{L} \mathbf{L} \mathbf{1} 1: 1$ system as a function of the pH in aqueous solution.

Figure S23. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} 31: 1$ system as a function of the pH in aqueous solution.

Figure S24. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L 4} 1: 1$ system as a function of the pH in aqueous solution.

Figure S25. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} \mathbf{L}$ 2:1 system as a function of the pH in aqueous solution.

Figure S26. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L 4} 2: 1$ system as a function of the pH in aqueous solution.

Figure S27. Representation of pCu_{2+} vs. pH for $\mathbf{~} \mathbf{L 1}$ (brown line), $\mathbf{L 2}$ (blue line), $\mathbf{L 3}$ (green line) and $\mathbf{L 4}$ (yellow line) $\left(\left[\mathrm{Cu}_{2}+\right]_{\text {tot }}=2 \cdot 10-6 \mathrm{M} ;[\mathrm{L}]_{\text {tot }}=10-5 \mathrm{M}\right)$.

Figure S28. DFT optimized structure of $\mathrm{Cu}_{2}+\mathbf{L} 1$ complex at physiological pH (7.40): A) Cu2+:L1 1:1, B) Cu2+:L1 2:1.

Figure S29. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} 1$ 1:1 system as a function of the pH in aqueous solution.

Figure S30. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} 21: 1$ system as a function of the pH in aqueous solution.

Figure S31. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L} \mathbf{S 3}_{1: 1}$ system as a function of the pH in aqueous solution.

Figure S32. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L 4} 1: 1$ system as a function of the pH in aqueous solution.

Figure S33. Distribution diagram of the $\mathrm{Cu}_{2+} \mathbf{L} \mathbf{L} 3$ 2:1 system as a function of the pH in aqueous solution.

Figure S34. Distribution diagram of the $\mathrm{Cu}_{2+}+\mathbf{L 4} 2: 1$ system as a function of the pH in aqueous solution.

Figure S35. Cyclic voltammograms at glassy carbon electrode of $10-3 \mathrm{M}$ solutions of A) $\left.\mathrm{CuL1}, \mathrm{~B}) \mathrm{Cu}_{2} \mathbf{L} 1, \mathrm{C}\right) \mathrm{CuL2}$, D) $\mathrm{Cu}_{2} \mathbf{L} 2$ in $0.15 \mathrm{NaClO}_{4}$ aqueous solutions at pH 7.4 . Potential scan rate $50 \mathrm{mV} \mathrm{s-1}$. Semi-derivative deconvolution of data was performed to increase peak resolution.

Figure S36. Cyclic voltammograms at glassy carbon electrode of 10-3 M solutions of $\mathrm{Cu}_{2+}(\mathrm{aq})$ plus BNP-L2 in A) $1: 1$ and B) $2: 1$ molar ratios, in $0.15 \mathrm{NaClO}_{4}$ aqueous solutions at pH 7.4. Semi-derivative deconvolution of data was performed to increase peak resolution.

Figure S37. Thermochemical cycle for the NP-complex interaction and electrochemistry.

Figure S38. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-L2.

Figure S39. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-BNP-L2.

Figure S40. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-SNP-L1.

Figure S41. Fitting of the SOD activity data obtained by the McCord-Fridovich method for the system Cu2-SNP-L2.

L3)

L5)

L6)

L7)

L8)

L9)

Figure S42. Representation of the catalytic constant corresponding to the systems: a) Cu-L5, Cu-L6, Cu-L7, Cu-L8, Cu2-L3, Cu2-L1, Cu2-L2, Cu2-L9, Cu2-L10, Cu2-L4, Cu2-SNP-L1, Cu2-SNP-L2, Cu2-BNP-L2, Cu2-BNP-L1.1-3

Figure S43. Representation of the variation of the absorbance intensity with time at 219 nm for $\mathrm{H}_{2} \mathrm{O}_{2}$ solutions with the presence of the ligands, both functionalised and free in solution. Yellow line corresponds to the EUK-134 reference. 4

IV. Tables

Table S1. Concentration of the grafted ligand, Cu_{2+} complexation capability and ζ-potential values determined for the different nanoparticle systems. All measurements were carried out in $10-4 \mathrm{M} \mathrm{NaClO}_{4}$ at pH 7.4 .

System	$[\mathbf{L}](\mathbf{m o l} / \mathbf{g N P})$	$\left[\mathbf{C u}_{2}+\right](\mathbf{m o l} / \mathbf{g N P})$	ζ-potential $(\mathbf{m V})$
BNP	-	-	$32.1(8)$
BNP-L1	$3.5(4) \cdot 10-5$	$6.8(6) \cdot 10-5$	$23.9(2)$
BNP-L2	$2.20(2) \cdot 10-4$	$4.2(8) \cdot 10-4$	$35(2)$
SNP	-	-	$-18.1(9)$
SNP-L1	$2.3(2) \cdot 10-5$	$4.4(4) \cdot 10-5$	$-14.9(2)$
SNP-L2	$3.3(3) \cdot 10-5$	$6.0(4) \cdot 10-5$	$-5.6(2)$

a) Values in parenthesis are standard deviations in the last significant figure.

Table S2. Logarithms of the stepwise protonation constants for $\mathbf{L 3}$ and $\mathbf{L 4}$ obtained by potentiometric measurements. 1 The constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Reaction	$\mathbf{L} 3$	$\mathbf{L} 4$
$L+H^{+} \rightleftarrows H L^{+}$	$10.67(1)$	$10.67(1)$
$H L^{+}+H^{+} \rightleftarrows H_{2} L^{2+}$	$9.85(1)$	$9.41(1)$
$H_{2} L^{2+}+H^{+} \rightleftarrows H_{3} L^{3+}$	$8.60(1)$	$8.24(5)$
$H_{3} L^{3+}+H^{+} \rightleftarrows H_{4} L^{4+}$	$7.49(1)$	$7.35(7)$
$H_{4} L^{4+}+H^{+} \rightleftarrows H_{5} L^{5+}$	$7.12(1)$	$6.98(9)$
$H_{5} L^{5+}+H^{+} \rightleftarrows H_{6} L^{6+}$	$4.99(2)$	$5.87(2)$
$\log \boldsymbol{\beta} \mathbf{b}$	48.72	48.52

a Values in parentheses are standard deviations in the last significant figure.
${ }^{\text {b }} \log \beta=\sum \log \mathrm{K}$

Table S3. Logarithm of the equilibrium constants for the interaction of Cu_{2+} with $\mathbf{L 3}$ and $\mathbf{L 4}$ obtained by potentiometric measurements. 1 The logarithms constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Entry	Reaction	L3	L4
1	$\left[\mathrm{CuH}_{3} \mathrm{~L}\right]^{5+}+\mathrm{H}^{+} \rightleftarrows\left[\mathrm{CuH}_{4} \mathrm{~L}\right]^{6+}$	$4.69(2)$	$3.82(2)$
2	$\left[\mathrm{CuH}_{2} \mathrm{~L}\right]^{4+}+\mathrm{H}^{+} \rightleftarrows\left[\mathrm{CuH}_{3} \mathrm{~L}\right]^{5+}$	$4.65(2)$	$6.13(2)$
3	$[\mathrm{CuHL}]^{3+}+\mathrm{H}^{+} \rightleftarrows\left[\mathrm{CuH}_{2} \mathrm{~L}\right]^{4+}$	$7.56(3)$	$7.44(2)$
4	$[\mathrm{CuL}]^{2+}+\mathrm{H}^{+} \rightleftarrows[\mathrm{CuHL}]^{3+}$	$9.53(3)$	$9.75(3)$
5	$\mathrm{~L}+\mathrm{Cu}^{2+} \rightleftarrows[\mathrm{CuL}]^{2+}$	$18.34(3)$	$17.22(6)$
6	$\left[\mathrm{CuL}^{2+}+\mathrm{Cu}^{2+} \rightleftarrows\left[\mathrm{Cu}_{2} \mathrm{~L}\right]^{4+}\right.$	$11.69(3)$	$7.96(6)$
7	$\left[\mathrm{Cu}_{2} \mathrm{~L}\right]^{4+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Cu}_{2} \mathrm{~L}(\mathrm{OH})\right]^{3+}+\mathrm{H}^{+}$	$-7.72(3)$	$-7.26(6)$

a Values in parentheses are standard deviations in the last significant figure.

Table S4. Logarithms of the equilibrium constants for the interaction of Zn_{2+} with $\mathbf{L} \mathbf{1}_{2}$ and $\mathbf{L} 2$ obtained by potentiometric measurements. The logarithms constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Entry	Reaction	L13	L2
1	$\left[\mathrm{ZnH}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)\right]^{3+}+\mathrm{H}^{+} \rightleftarrows\left[\mathrm{ZnH}_{3}\left(H_{-1} L\right)\right]^{4+}$	6.32 (3)	-
2	$\left[\mathrm{ZnH}\left(H_{-1} L\right)\right]^{2+}+2 \mathrm{H}^{+} \rightleftarrows\left[\mathrm{ZnH}_{3}\left(H_{-1} L\right)\right]^{4+}$	12.78(2)	-
3	$\left[\mathrm{ZnH}\left(\mathrm{H}_{-1} L\right)\right]^{2+}+H^{+} \rightleftarrows\left[\mathrm{ZnH}_{2}\left(\mathrm{H}_{-1} L\right)\right]^{3+}$	-	6.96(3)
4	$\left[\mathrm{Zn}\left(\mathrm{H}_{-1} L\right)\right]^{+}+H^{+} \rightleftarrows\left[\mathrm{ZnH}\left(\mathrm{H}_{-1} L\right)\right]^{2+}$	7.83(1)	9.76(2)
5	$\mathrm{Zn}^{2+}+\mathrm{H}_{-1} L^{-} \rightleftarrows\left[\mathrm{Zn}\left(\mathrm{H}_{-1} L\right)\right]^{+}$	14.65(2)	9.84(6)
6	$\left[\mathrm{Zn}\left(\mathrm{H}_{-1} \mathrm{~L}\right)\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}\left(\mathrm{H}_{-1} L\right)(\mathrm{OH})\right]+\mathrm{H}^{+}$	-9.96(3)	-
7	$\left[\mathrm{Zn}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})\right]+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})_{2}\right]^{-}+\mathrm{H}^{+}$	-10.93(3)	-
8	$2 \mathrm{Zn}{ }^{2+}+\left[\left(\mathrm{H}_{-1} \mathrm{~L}\right)\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})\right]^{2+}+\mathrm{H}^{+}$	11.14(2)	6.71(6)
9	$2 \mathrm{Zn}^{2+}+\left[\left(\mathrm{H}_{-1} \mathrm{~L}\right)\right]^{+}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH}) 2\right]^{2+}+\mathrm{H}^{+}$	2.33(3)	-3.03(6)
10	$2 \mathrm{Zn}{ }^{2+}+\left[\left(\mathrm{H}_{-1} \mathrm{~L}\right)\right]^{+}+3 \mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH}) 3\right]^{+}+\mathrm{H}^{+}$	-7.92(4)	
11	$\mathrm{Zn}^{2+}+\left[\mathrm{Zn}\left(\mathrm{H}_{-1} L\right)\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} L\right)(\mathrm{OH})\right]^{2+}+\mathrm{H}^{+}$	-3.51(3)	-3.13(3)
12	$\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})_{2}\right]^{+}+\mathrm{H}^{+}$	-8.81(3)	-9.74(6)
13	$\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})_{2}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2}\left(\mathrm{H}_{-1} \mathrm{~L}\right)(\mathrm{OH})_{3}\right]+\mathrm{H}^{+}$	-10.25(4)	-

a Values in parentheses are standard deviations in the last significant figure.

Table S5. Logarithm of the equilibrium constants for the interaction of $\mathrm{Zn} 2+$ with $\mathbf{L 3}$ and L4 obtained by potentiometric measurements. 1 The logarithms constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Entry	Reaction	L3	L4
1	$\left[\mathrm{ZnH}_{2} \mathrm{~L}\right]^{4+}+\mathrm{H}^{+} \rightleftarrows\left[\mathrm{ZnH}_{3} \mathrm{~L}\right]^{5+}$	6.97(4)	-
2	$[\mathrm{ZnHL}]^{3+}+\mathrm{H}^{+} \rightleftarrows\left[\mathrm{ZnH}_{2} L\right]^{4+}$	6.65(6)	6.99(3)
3	$[\mathrm{ZnL}]^{2+}+\mathrm{H}^{+} \rightleftarrows[\mathrm{ZnHL}]^{3+}$	9.28 (3)	8.24(4)
4	$\mathrm{Zn}^{2+}+L \rightleftarrows[\mathrm{ZnL}]^{2+}$	10.76(4)	10.32(4)
5	$\mathrm{Zn}^{2+}+L+\mathrm{H}_{2} \mathrm{O} \rightleftarrows[\mathrm{ZnL}(\mathrm{OH})]^{+}+\mathrm{H}^{+}$	0.01(5)	0.21 (6)
6	$[\mathrm{ZnL}]^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows[\mathrm{ZnL}(\mathrm{OH})]^{+}+\mathrm{H}^{+}$	-10.75(7)	$-10.11(7)$
7	$2 Z n^{2+}+L \rightleftarrows\left[Z n_{2} L\right]^{4+}$	15.69(5)	-
8	$\mathrm{Zn}^{2+}+[\mathrm{ZnL}]^{2+} \rightleftarrows\left[\mathrm{Zn}_{2} \mathrm{~L}\right]^{4+}$	4.93(6)	-
9	$2 \mathrm{Zn}{ }^{2+}+\mathrm{L}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2} \mathrm{~L}(\mathrm{OH})\right]^{3+}+\mathrm{H}^{+}$	8.10(2)	6.36(6)
10	$2 \mathrm{Zn}^{2+}+L+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2} \mathrm{~L}(\mathrm{OH})_{2}\right]^{2+}+\mathrm{H}^{+}$	-1.80(2)	-2.03(1)
11	$\left[\mathrm{Zn}_{2} L\right]^{4+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn} n_{2} L(\mathrm{OH})\right]^{3+}+\mathrm{H}^{+}$	-7.59(5)	-
12	$\left[\mathrm{Zn}_{2} \mathrm{~L}(\mathrm{OH})\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Zn}_{2} \mathrm{~L}(\mathrm{OH})_{2}\right]^{2+}+\mathrm{H}^{+}$	-9.90(3)	-8.39(6)

[^0]Table S6. Logarithm of the equilibrium constants for the interaction of Cu_{2+} and $\mathrm{Zn} 2+$ with $\mathbf{L} \mathbf{3}$ and $\mathbf{L 4}$ obtained by potentiometric measurements. 1 The logarithms constants were determined in $0.15 \mathrm{M} \mathrm{NaClO}_{4}$ at $298.1 \pm 0.1 \mathrm{~K}$.

Entry	Reaction	L3	L4
4	$[\mathrm{CuZnL}]^{4+}+\mathrm{H}^{+} \rightleftarrows[\mathrm{CuZnHL}]^{5+}$	-	$30.23(6)$
5	$\mathrm{Cu}^{2+}+\mathrm{Zn}^{2+}+L \rightleftarrows[\mathrm{CuZnL}]^{4+}$	$23.26(9)$	-
6	$\mathrm{Cu}^{2+}+\mathrm{Zn}^{2+}+L+\mathrm{H}_{2} \mathrm{O} \rightleftarrows[\mathrm{CuZnL}(\mathrm{OH})]^{3+}+\mathrm{H}^{+}$	$18.57(2)$	$14.55(3)$
7	$\mathrm{Cu}^{2+}+\mathrm{Zn}^{2+}+L+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{CuZnL}(\mathrm{OH})_{2}\right]^{2+}+2 \mathrm{H}^{+}$	$5.34(6)$	$6.24(3)$

[^1]
IV. References

1 R. Belda, S. Blasco, B. Verdejo, H. R. Jiménez, A. Doménech-Carbó, C. Soriano, J. Latorre, C. Terencio and E. García-España, Dalton Trans., 2013, 42, 11194.

2 Á. Martínez-Camarena, E. Delgado-Pinar, C. Soriano, J. Alarcón, J. M. Llinares, R. Tejero and E. García-España, Chem. Commun., 2018, 54, 3871.

3 L. Guijarro, M. Inclán, J. Pitarch-Jarque, A. Doménech-Carbó, J. U. Chicote, S. Trefler, E. García-España, A. García-España and B. Verdejo, Inorg. Chem., 2017, 56, 13748.
4 I. Ivanović-Burmazović and M. R. Filipović, Adv. Inorg. Chem., 2012, 64, 53.

[^0]: a Values in parentheses are standard deviations in the last significant figure.

[^1]: a Values in parentheses are standard deviations in the last significant figure.

