## SUPPORTING INFORMATION

## Interaction of cellulose coated and nitrodopamine coated superparamagnetic iron oxide nanoparticles with alpha-lactalbumin

Fakhrossadat Mohammadi,<sup>a</sup>\* Marzieh Moeeni,<sup>a</sup> Chengnan Li,<sup>b</sup> Rabah Boukherroub<sup>b</sup> and Sabine Szunerits<sup>b</sup>\*

<sup>a</sup> Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran

<sup>b</sup>Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France



## langmuir Isotherms

To whom correspondence should be send to: Fakhrossadat Mohammadi (fmohammadi@iasbs.ac.ir; Fax: +98-24-33153232 ; Tel: +98-24-33153218) Dr. Sabine Szunerits (<u>sabine.szunerits@univ-lille1.fr</u> Tél. +33 (0)3 62 53 17 25 Fax. +33 (0)3 62 53 17 01)



Figure S1. Langmuir and Freundlich isotherm plots for adsorption of BLA on the surface of magnetic particles





**Figure S2**: Fluorescence spectra of BLA (2.5 μM) in the presence of magnetic particles with increasing NaCl concentration (0-20 mM).

**Figure S3:** Change in far-UV circular dichroism spectra of BLA in the absence and presence of magnetic particles.



Figure S4: Representation of 5 best docked poses of MP<sub>Cellulose</sub>/BLA interactions





**(a)** 







C)



**Figure S5**: (a) Representation of 5 best docked poses of MP<sub>dopamine</sub>/BLA interactions, b) The interface interactive amino acids and the MP<sub>dopamine</sub>-Sheet and the hydrogen bindings (in green color), electrostatic bindings (in orange color) and hydrophobic bindings(in pink color) which contributed in the binding site, c) The calculated distances between MP<sub>dopamine</sub>-sheet and four tryptophans in BLA rendered by pymo





(c)



**Figure S6**: a) Representation of 5 best docked poses of MP/BLA interactions, b) the interface interactive amino acids and the MP-Sheet and the hydrogen bindings (in green color) which contributed in the binding site, c) The calculated distances between MP-sheet and four tryptophans in BLA rendered by pymol













**Figure S7.** The interface interactive amino acids and the  $MP_{cellulose}$ -Sheet and the hydrogen bindings (in green color) and hydrophobic binding (in pink color) which contributed in the binding site.

## S1 1, Foester Theory

$$E = 1 - \frac{F}{F_0} = \frac{R_0^0}{R_0^6 + r^6}$$
(8)

with 
$$R_0^6 = 8.79 \times 10^{-25} [\kappa^2 n^{-4} \phi J(\lambda)]$$
 (9)

$$J(\lambda) = \frac{\int_{0}^{\infty} F_{D}(\lambda)\varepsilon_{A}(\lambda)\lambda^{4} d\lambda}{\int_{0}^{\infty} F_{D}(\lambda)d\lambda}$$
(10)

where *r* is the distance between the donor and acceptor (E)  $R_0$  the Förster critical distance where efficiency of the energy transfer between donor and acceptor is 50%,  $K^2$  the relative orientation of the transition dipoles of the donor and acceptor ( $K^2 = 2/3$  for a random orientation), *n* the average refractive index of medium (n = 1.336),  $\Phi$  the fluorescence quantum yield of the donor and *J* a factor describing the overlapping between the emission spectrum of the donor and the absorption spectrum of the acceptor with  $F(\lambda)$  being the fluorescence intensity of the donor at corresponding wavelength  $\lambda$ ,  $\varepsilon(\lambda)$  the molar absorption coefficient of the acceptor at wavelength  $\lambda$ .

| Docked pose | Total energy (a.u.) | Amino acids                                                    |
|-------------|---------------------|----------------------------------------------------------------|
| 1           | -481.17             | Met1X, GLu1, Gln2, Thr4, Phe31, His32, Thr33, Ser34,           |
|             |                     | Gly35, Tyr36, Asp37, Gln39, Ala40, Ile41, Val42, Gln43,        |
|             |                     | Asn44, Asn45, Thr48, Gln54, Ala109, Lys114, Gln117, <u>Trp</u> |
|             |                     | <u>118</u>                                                     |
| 2           | -467.10             | Met1X, Gln2, Lys5, Phe31, His32, Thr33, Ser34, Gy35,           |
|             |                     | Tyr36, Asp37, Gln39, Ala40, Ile41, Val42, Gln43, Asn44,        |
|             |                     | Asn45, Thr48, Gln54, Trp118, Lys122                            |
| 3           | -465.69             | Phe31, His32, Thr33, Lys114, Ser34, Gy35, Val42, Gln43,        |
|             |                     | Asn44, Asn45, Asp46, Ser47, Glu49, Gln54, Asn56, Ly58,         |
|             |                     |                                                                |

Table S1: The total energy and the interface amino acids of various orientations of MP/BLA interaction.

|   |         | Ile59, Trp60, Ser70, Val99, Asn102, Tyr103, Trp104,     |
|---|---------|---------------------------------------------------------|
|   |         | Leu105, Ala106, Leu110                                  |
| 4 | -464.55 | Tyr18, Gly19, Gly20, Val21, Glu25, Ile95, Leu96, Asp97, |
|   |         | Lys98, Val99, Gly100, Ile101, Asn102, His107, Lys108,   |
|   |         | Cys111, Ser112, Glu113, Lys114                          |
| 5 | -462.85 | Gly19, Gly20, Val21, Ser22, Glu25Leu96, Leu96, Asp97,   |
|   |         | Lys98, Val99, Gly100, Ile101, Asn102, His107, Lys108,   |
|   |         | Cys111, Ser112, Glu113, Lys114, Leu115, Asp116          |
|   |         |                                                         |

**Table S2:** The parameters of the five stable MP/BLA complex, as obtained by molecular docking. The calculated distances between the interface interactive amino acids and the MP-Sheet and the types of bindings which contributed in the binding site

| Docked pose | Amino acids | Distances (A <sup>o</sup> ) | Category      | Туре         |
|-------------|-------------|-----------------------------|---------------|--------------|
|             | His32       | 2.79                        | Hydrogen bond | Conventional |
|             | Asn45       | 1.86                        | Hydrogen bond | Conventional |
| Pose1       | Asn45       | 2.70                        | Hydrogen bond | Conventional |
|             | Asp37       | 1.97                        | Hydrogen bond | Conventional |
|             | Gly35       | 1.75                        | Hydrogen bond | Conventional |
|             | Gln43       | 1.26                        | Hydrogen bond | Conventional |
|             | His32       | 2.77                        | Hydrogen bond | Conventional |
| Pose2       | Asn45       | 2.59                        | Hydrogen bond | Conventional |
| Pose3       | Leu105      | 2.66                        | Hydrogen bond | Conventional |
| Pose4       | Lys108      | 2.46                        | Hydrogen bond | Conventional |
|             | Asp97       | 2.99                        | Hydrogen bond | Carbon       |
|             | His107      | 3.77                        | Hydrogen bond | Carbon       |
|             | Asn102      | 2.16                        | Hydrogen bond | Conventional |
| Pose5       | Ser112      | 2.15                        | Hydrogen bond | Conventional |
|             | Lys114      | 1.89                        | Hydrogen bond | Conventional |
|             |             |                             |               |              |

| Table   | <b>S3:</b> | The   | total    | energy | and | the | interface | amino | acids | of | various | orientations | of |
|---------|------------|-------|----------|--------|-----|-----|-----------|-------|-------|----|---------|--------------|----|
| MP dopa | mine/B     | LA in | teractio | on.    |     |     |           |       |       |    |         |              |    |

| Docked pose | Total energy (a.u.) | Amino acids                                                                                                                                                                                                                                      |  |  |  |
|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1           | -663.89             | Met1X, GLu1, Gln2, Leu3, Thr4, Lys5, Cys6, Glu7, Vl8, Phe9,<br>Arg10, Glu11, Lys13, Thr38, Gln39, Leu81, Asp82, Asp83,<br>Asp84, Thr86, Cys120, Glu121, Lys122                                                                                   |  |  |  |
| 2           | -649.97             | Leu3, Thr4, Lys5, Cys6, Glu7, Vl8, Phe9, Arg10, Glu11, Lys13,<br>Thr38, Ala109, Leu110, Cys111, Ser112, Glu113, Lys114,<br>Asp116, Gln117, <u>Trp118</u>                                                                                         |  |  |  |
| 3           | -584.65             | Met1X, GLu1, Gln2,Lys5, Cys28, Phe31, His32, Thr33, Ser34,<br>Gy35, Tyr36, Asp37, Gln39, Ala40, Ile41, Val42, Gln54,<br>Trp104, Leu105, Ala106, His107, Lys108, Ala109, Leu110,<br>Cys111, Ser112, Glu113, Lys114, Asp116, Gln117, <u>Trp118</u> |  |  |  |
| 4           | -574.62             | Asp37, Gln2, His32, Met1x, Glu1, Gly35, Ala109, Leu110, Phe31, <u>Trp118</u>                                                                                                                                                                     |  |  |  |
| 5           | -557.43             | Arg10, Lys13, Glu7, Cys6, Lys122, Leu3                                                                                                                                                                                                           |  |  |  |

**Table S4:** The parameters of the five stable MP<sub>dopamine</sub>/ BLA complex, as obtained by molecular docking. The calculated distances between the interface interactive amino acids and the MP<sub>dopamine</sub> Sheet and the types of bindings which contributed in the binding site

| Docked pose  | Amino acids | Distances (A <sup>o</sup> ) | Category      | Туре              |
|--------------|-------------|-----------------------------|---------------|-------------------|
|              | Arg10       | 5.39                        | Electrostatic | Attractive charge |
|              | Arg10       | 4.95                        | Electrostatic | Attractive charge |
|              | Asp84       | 5.22                        | Electrostatic | Attractive charge |
|              | Glu121      | 4.80                        | Electrostatic | Attractive charge |
| Pose1 (the   | Glu7        | 3.74                        | Electrostatic | Attractive charge |
| most stable) | Glu1        | 4.85                        | Electrostatic | Attractive charge |
|              | Arg10       | 2.10                        | Hydrogen bond | Conventional      |
|              | Lys122      | 2.97                        | Hydrogen bond | Conventional      |
|              | Glu7        | 2.76                        | Hydrogen bond | Conventional      |
|              | Asp83       | 2.61                        | Hydrogen bond | Conventional      |
|              | Asp83       | 2.99                        | Hydrogen bond | Conventional      |
|              | Glu1        | 1.83                        | Hydrogen bond | Conventional      |
|              | Lys122      | 3.56                        | Hydrogen bond | Carbon            |
|              | Asp83       | 2.95                        | Hydrogen bond | Carbon            |
|              | MetX1       | 2.64                        | Hydrogen bond | Carbon            |
|              | I           |                             |               |                   |

|       | Glu1   | 2.36 | Hydrogen bond  | Carbon              |
|-------|--------|------|----------------|---------------------|
|       | Lys13  | 2.93 | 0Hydrogen bond | Pi-Cation; Pi-Donor |
|       | Glu1   | 4.93 | Electrostatic  | Pi-Anion            |
|       | Glu7   | 3.95 | Electrostatic  | Pi-Anion            |
|       | Asp83  | 4.82 | Electrostatic  | Pi-Anion            |
|       | Asp84  | 4.95 | Electrostatic  | Pi-Anion            |
|       | Glu121 | 4.74 | Electrostatic  | Pi-Anion            |
|       | Leu3   | 3.85 | Hydrophobic    | Alkyl               |
|       | Leu3   | 4.06 | Hydrophobic    | Alkyl               |
|       | Lys122 | 5.44 | Hydrophobic    | Pi-Alkyl            |
|       | Arg10  | 4.82 | Hydrophobic    | Pi-Alkyl            |
|       | Asp37  | 4.96 | Electrosta0tic | Attractive charges  |
|       | Lys114 | 1.59 | Hydrogen Bond  | Conventional        |
|       | Asp37  | 2.90 | Hydrogen Bond  | Conventional        |
|       | His32  | 1.68 | Hydrogen Bond  | Conventional        |
|       | Leu110 | 2.90 | Hydrogen Bond  | Conventional        |
| Pose2 | Thr33  | 2.05 | Hydrogen Bond  | Carbon              |
|       | His32  | 3.94 | Electrostatic  | Pi-Cation           |
|       | Ala109 | 3.03 | Hydrophobic    | Pi-Sigma            |
|       | Phe31  | 4.66 | Hydrophobic    | Pi-Pi Stacked       |
|       | His32  | 4.86 | Hydrophobic    | Pi-Pi Stacked       |
|       | Leu110 | 4.58 | Hydrophobic    | Alkyl               |
|       | Trp118 | 4.48 | Hydrophobic    | Pi-Alkyl            |
|       | Ala40  | 5.32 | Hydrophobic    | Pi-Alkyl            |
|       | Met1x  | 4.26 | Hydrophobic    | Pi-Alkyl            |