Rapid and selective adsorption of a typical aromatic organophosphorus flame retardant on the MIL-101-based metal-organic frameworks

Hui Su, Jiaxin Lv, Liansheng Yang, Li Feng, Yongze Liu, Ziwen Du,* Liqiu Zhang*

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research

Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science

& Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China.

Corresponding Authors: Dr. Ziwen Du and Prof. Liqiu Zhang

Phone: 86-010-62336246; E-mail: <u>ziwendu@bjfu.edu.cn</u> (Ziwen Du); <u>zhangliqiu@163.com</u> (Liqiu Zhang).

Supplementary Information

Number of Pages: 5

Number of Tables: 2

Number of Figures: 9

Nomo	Molecular	Molecular mass	Log K _{OW} St	Structural formula	
Indiffe	formula	(g/mol)		Structural formula	
TPhP	C ₁₈ H ₁₅ O ₄ P	326.28	4.59 ª		
bezafibrate	C ₁₉ H ₂₀ ClNO ₄	361.82	4.25 ^b	CI N H O O O O O O O O O O O O O O O O O O	
phenol	C ₆ H ₅ OH	94.11	1.46 °	OH	
2,4,6-trimethyl phenol	C ₉ H ₁₂ O	136.19	2.73 ^d	OH	
TCEP	$C_6H_{12}Cl_3O_4P$	285.49	1.44 ^a		
ТСРР	$C_9H_{18}Cl_3O_4P$	327.6	2.59 ª		
TiBP	C ₁₂ H ₂₇ O ₄ P	266.31	3.60 ^a		
DPhP	$C_{12}H_{11}O_4P$	250.19	2.88 ª		

Table S1. Physicochemical properties of pollutants

- ^a R. Rodil, J. B. Quintana, P. López-Mahía, S. Muniategui-Lorenzo and D. Prada-Rodríguez, *Journal of Chromatography A*, 2009, **1216**, 2958-2969.
- ^b D. De Ridder, A. Verliefde, S. Heijman, J. Verberk, L. Rietveld, L. Van Der Aa, G. Amy and J. Van Dijk, *Water Science and Technology*, 2011, **63**, 416-423.
- ^c K. Hanna, I. Beurroies, R. Denoyel, D. Desplantier-Giscard, A. Galarneau and F. Di Renzo, *Journal of colloid and interface science*, 2002, 252, 276-283.
- ^d G. Ohlenbusch and F. Frimmel, *Chemosphere*, 2001, **45**, 323-327.

 Table S2 Specific surface area and pore volume of adsorbents

A dearboart motorial	Specific surface	Pore volume	Average pore size
Adsorbent material	m²/g	cm ³ /g	nm
Cr-MIL-101	3559.72	1.658	2.10
Fe-MIL-101-NH ₂	1651.96	1.100	2.99
Activated carbon ^a	950-1050	0.9	08-1.2

^a Provided by the manufacturer.

Fig S1. XRD patterns of Cr-MIL-101 (a) and Fe-MIL-101-NH₂ (b)

Fig S2. Nitrogen adsorption desorption curves of Cr-MIL-101(a) and Fe-MIL-101-NH₂ (b)

Fig S3. XRD patterns of Cr-MIL-101(a) and Fe-MIL-101-NH₂(b) before and after TPhP adsorption

Fig S4. FT-IR spectra of Cr-MIL-101(a) and Fe-MIL-101-NH₂ (b) before and after TPhP adsorption

Fig S5. TGA curves of Cr-MIL-101(a) and Fe-MIL-101-NH₂ (b) before and after TPhP adsorption

Fig S6. Pore size distribution of Cr-MIL-101(a) and Fe-MIL-101-NH₂ (b) after adsorption

Fig S7. XRD patterns (a) and FTIR spectra (b) of Cr-MIL-101 before and after TPhP adsorption at

Fig S8. The regeneration efficiency of TPhP during successive sorption cycles

Fig S9. Adsorbed amounts of TPhP on the Cr-MIL-101 in five successive sorption cycles