Supporting Information

Stable immobilization of aldehyde ketone reductase mutants containing non-natural amino acids on an epoxy resin via strainpromoted alkyne-azide cycloaddition

Huimin Li^a, Youcheng Yin^b, Anming Wang^a*, Ningning Li^a, Ru Wang^b, Jing Zhang^a,

Xinxin Chen^a, Xiaolin Pei^a, Tian Xie^b*

^aCollege of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University,

Hangzhou 310014, P. R. China

^bHolistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University,

Hangzhou, Zhejiang, China

Corresponding author:

Dr. Anming Wang

College of Materials, Chemistry and Chemical Engineering,

Hangzhou Normal University, Hangzhou 310036, P. R. China

TEL: +86-571-28865978; FAX: +86-571-28865630;

E-mail: waming@hznu.edu.cn

Table S1 Primers required for construction of AKR-pZE21

Primer	Sequence $(5' \rightarrow 3')$	Restriction-enzyme	Tm
		cutting sites	(°C)
AKR-pZE21-F	CGG GGTACC ATGCTGTACAAAGAACTGGGCCGTA	KpnI	60
AKR-pZE21-R	CCCAAGCTTTTAGTGGTGGTGGTGGTGGTG	HindIII	44
	ACCCAGACTATCC		

Italic, conserved base; Bold, restriction site; Underlined, his-tag label

Table S2 Primers for AKR sites mutations

Primer	Sequence $(5' \rightarrow 3')$	Tm (°C)
AKR-110Y-pZE21-F	CGTTTAGATACCGATTAGGTGGATCTGTATCTG	57
AKR-110Y-pZE21-R	CAGATACAGATCCACCTAATCGGTATCTAAACG	57
AKR-114Y-pZE21-F	GATTATGTGGATCTGTAGCTGATTCATTGGCCG	60
AKR-114Y-pZE21-R	CGGCCAATGAATCAGCTACAGATCCACATAATC	59
AKR-143Y-pZE21-F	CAGGGCTTAATTCGCTAGATTGGTGTGAGTAAT	61
AKR-143Y-pZE21-R	ATTACTCACACCAATCTAGCGAATTAAGCCCTG	59
AKR-162Q-pZE21-F	GCCATTTCTAAATCATAGGAACCGATTGTTTGT	59
AKR-162Q -pZE21-R	ACAAACAATCGGTTCCTATGATTTAGAAATGGC	59
AKR-189Q -pZE21-F	TTACTGGAATTTTGTTAGAAAAATGGCGTGACC	59
AKR-189Q -pZE21-R	GGTCACGCCATTTTTCTAACAAAATTCCAGTAA	58

Italic, conserved base ; Underlined, mutation site

	Purified	Free	Immobilized		
Enzyme	enzyme	enzyme activity	enzyme activity		
	(mg/L)	(U/mg)	(U/mg)		
AKR- pZE21-BL21	180.00±0.03	1.070±0.001	1.090±0.002		
AKR-110Y- pZE21-MG1655	169.00±0.02	0.940±0.005	1.050±0.005		
AKR-114Y- pZE21-MG1655	182.00±0.05	1.080 ± 0.008	1.240±0.007		
AKR-143Y- pZE21-MG1655	165.00±0.01	0.950±0.002	1.100±0.006		
AKR-162Q- pZE21-MG1655	158.00±0.04	0.920±0.007	1.020±0.004		
AKR-189Q- pZE21-MG1655	175.00±0.03	0.980 ± 0.008	1.120±0.003		
AKR-N114Y-189Q-pZE21-MG1655	120.00±0.04	0.900±0.006	1.010±0.005		
AKR-N114Y-189Q-143Y -pZE21-			0.000+0.002		
MG1655	100.00±0.02	0.870±0.005	0.990±0.002		
AKR-N114Y-189Q-143Y-110Y-	82.00+0.05	0.000+0.004	0.050.0.007		
162Q-pZE21-MG1655	82.00±0.05	0.800±0.004	0.830±0.006		

Table S3 Expression and activity of free AKR preparations

temperatures									
Enzyme	30		40		50		60		En (VI mol-
	$K_{\rm D} imes 10^{-2} ({\rm h}^{-1})$ $t_{1/2} ({\rm h})$	t _{1/2} (h)	<i>K</i> _D ×10 ⁻² (h ⁻¹)	t _{1/2}	$K_{\rm D} \times 10^{-2} ({\rm h}^{-1})$	t _{1/2}	$K_{\rm D} \times 10^{-2} ({\rm h}^{-1})$	t _{1/2}	¹)
				(h)	1)	(h)	1)	(h)	
Free AKR	7.80	8.88	8.84	7.84	10.19	6.80	11.18	6.20	10.27
Wild type immobilization	4.39	15.79	4.78	14.50	5.81	11.93	7.27	9.53	14.26
One-point immobilization	2.50	27.72	2.77	25.02	4.20	16.31	4.92	14.09	20.61.
Three-point immobilization	1.80	38.50	2.39	29.00	3.12	22.21	3.79	18.28	21.03
Five-point immobilization	0.65	106.62	0.9	77.00	1.27	54.57	1.54	45.00	24.67

Table S4 Denaturation rate constant (K_D, t^1) , half-life $(t_{1/2}, h)$ and reaction activation energy $(E_a, KJ \cdot moL^{-1})$ of AKR preparations at different

Figure S1. The structure of a one-point mutation site for the insertion of the aldehyde ketone reductase of pAzF. The orange mark represents the enzyme mutation site, the red mark represents the active site¹ ,the pink short line structure is the active center of the enzyme NADPH, (PDB ID: 5dan.1; resolution, 2.0 Å).

Figure S2. The structure of a three-point mutation site for the insertion of the aldehyde ketone reductase of pAzF. The orange mark represents the enzyme mutation site, the red mark represents the active site the pink short line structure is the active center of the enzyme NADPH, (PDB ID:

5dan.1; resolution, 2.0 Å).

Figure S3. The structure of a five-point mutation site for the insertion of the aldehyde ketone reductase of pAzF. The orange mark represents the enzyme mutation site, the red mark represents the active site ,the pink short line structure is the active center of the enzyme NADPH, (PDB ID: 5dan.1; resolution, 2.0 Å).

Figure S4. SDS-PAGE photograph of supernatant and elution in the precise one-point immobilization of AKR-114Y using different amino acid modified resins (Lane M, protein marker; Lane 1, pre-immobilization crude enzyme; Lane 2, supernatant from immobilization; Lane 3, elution of first time from the immobilized enzyme using 2M NaCl aqueous; Lane 4, elution of second time from the immobilized enzyme using 2M NaCl aqueous. Three groups, lane 2, 3, 4/5, 6, 7/8, 9, 10, were for the resin modified using lysine, glutamate, glycine.)

Figure S5. SDS-PAGE photograph of supernatant and elution in the precise two-point immobilization of AKR mutant using lysine-modified resins (Lane M, protein marker; Lane 1, pre-immobilization crude enzyme; Lane 2, supernatant from immobilization; Lane 3, elution of first time from the immobilized enzyme using 2M NaCl aqueous; Lane 4, elution of second time from the immobilized enzyme using 2M NaCl aqueous.)

Figure S6. SDS-PAGE photograph of supernatant and elution in the precise five-point immobilization of AKR mutant using lysine-modified resins (Lane M, protein marker; Lane 1, pre-immobilization crude enzyme; Lane 2, supernatant from immobilization; Lane 3, elution of first time from the immobilized enzyme using 2M NaCl aqueous solution; Lane 4, elution of second time from the immobilized enzyme using 2M NaCl aqueous solution.)

Reference

 H. Hou, R. Y. Li, X. Y. Wang, Z. Yuan, X. M. Liu, Z. M. Chen and X. L. Xu, Acta Crystallogr F, 2015, 71, 847-855.