Electronic Supplementary Information

Facile synthesis of crystalline viologen-based porous ionic polymers with hydrogen-bonded water for efficient catalytic CO₂ fixation at ambient conditions

Yadong Zhang, Ke Zhang, Lei Wu, Ke Liu, Rui Huang, Zhouyang Long, Minman Tong* and Guojian Chen*

School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China *E-mail: gjchen@jsnu.edu.cn (G. Chen); tongmm@jsnu.edu.cn (M. Tong).

Fig. S1 XRD patterns of (A) 4,4'-BPy, BCMBP and VIP-Cl, (B) 4,4'-BPy, BBMBP and VIP-Br prepared in CH₃CN and (C) VIP-Br series that were synthesized in different solvents.

Fig. S2 The optimized molecular structure of 4,4'-BPy (0.861×0.506 nm).

Fig. S3 N₂ adsorption-desorption isotherms of the control samples (A) VIP-Cl (DMF), VIP-Cl (Dioxane) and VIP-Cl (NMP) , (B) VIP-Br (DMF), VIP-Br (Dioxane) and VIP-Br (NMP).

Entry	Polymers	S_{BET} (m ² g ⁻¹)	Synthetic method	Ref.
1	VIP-Cl	56	Menshutkin reaction	This work
2	VIP-Br	38	Menshutkin reaction	This work
3	iCOP-1	9.01	Menshutkin reaction	S1
4	iCOP-2	12.93	Menshutkin reaction	S1
5	PIN-1	2	Menshutkin reaction	S2
6	COP ₁ ⁺⁺	None	Menshutkin reaction	S 3
7	TBB-Bpy-a	<10	Menshutkin reaction	S4
8	pDAP	41	Menshutkin reaction	S 5
9	V-CDP	22	Menshutkin reaction	S 6
10	bipy-POP	25	Menshutkin reaction	S7
11	COP ₂ ⁺⁺	None	Zincke reaction	S 3
12	HS	12	Zincke reaction	S 8
13	HT	35	Zincke reaction	S 8
14	cCTN:Cl-	30	Zincke reaction	S 9
15	COTs	35	Zincke reaction	S10
16	CONs	153	Zincke reaction	S10
17	V-PCIF-Cl	174	Zincke reaction	S11
18	V-PCIF-Br	383	Zincke reaction	S11
19	POP-V1	812	Sonogashira-Hagihara reaction	S12
20	PCP-Cl	755	Sonogashira-Hagihara reaction	S13
21	V-iPHP-11	562	Heck reaction	S14
22	V-iPHP-21	432	Heck reaction	S14
23	cCTF-500	1247	Ionothermal reaction (ZnCl ₂)	S15
24	HCP-V1	865	Friedel-Crafts reactions (FeCl ₃)	S16

 Table S1 The detailed comparisons for surface areas of viologen-based ionic polymers prepared by different synthetic methods.

 Table S2 Elemental analysis results of VIP-Cl and VIP-Br.

Sample	Molecular formula	C (wt%)	N (wt%)	H (wt%)	C/N	H ₂ O (wt%) ^a	V content (mmol g ⁻¹) ^b
VIP-Cl	$[(C_{24}H_{20}N_2Cl_2)\bullet 4H_2O]_n$	Found: 59.72	Found: 5.77	Found: 5.46	10.35	14.6	2.06
		Calcd: 60.13	Calcd: 5.84	Calcd: 5.89	10.29	15.0	2.08
VIP-Br	$[(C_{24}H_{20}N_2Br_2)\bullet 3H_2O]_n$	Found: 52.08	Found: 5.10	Found: 4.10	10.21	8.5	1.82
		Calcd: 52.38	Calcd: 5.09	Calcd: 4.76	10.29	9.8	1.82

^[a] The found content value of H₂O was measured by the TGA result and theoretical value was calculated by the molecular formulas trapped H-bonded water. [b] Viologen (V) ionic content (mmol g^{-1}) = 0.5 × 1000 × N content (wt %) / 14.

Fig. S4 Thermogravimetric analysis (TGA) curves of VIP-Cl and VIP-Br under N2 atmosphere.

Fig. S5 The solid-state EPR spectra at X-band at room temperature.

Fig. S6 Energy-dispersive X-ray spectrometry (EDS) elemental mapping images of (A, B) VIP-Cl for C, Cl, N elements, and (C, D) VIP-Br for C, Br, N elements at the SEM mode.

Catalyst	P (MPa)	<i>T</i> (°C)	<i>t</i> (h)	Yield (%)	Ref.
PCP-Cl	3	100	12	98	S13
PS-DHPIMBr	2	130	1	97	S17
PIM2	1	130	4	92	S18
IT-POP-1	1	120	10	99	S19
poly-imidazoliums	1	110	2	94	S20
POM3-IM	1	120	8	90	S21
TBB-Bpy-a	1	120	4	88	S4
cCTF-500	1	90	12	95	S15
FIP-Im	1	80	10	99	S22
3-IPMP-EtI	1	90	5	90	S23
UIIP	1	90	2	99	S24
CCTF-350	0.1	120	24	93.1	S25
PDMBr	0.1	120	12	91.3	S26
IP3	0.1	100	24	99	S27
PDBA-Cl-SCD	0.1	90	6	99.3	S28
PGDBr-5-2OH	0.1	70	24	91	S29
HIP-Br-2	0.1	70	96	90	S30
PIP-Bn-Cl	0.1	100	3	99	S31
V-PCIF-Br	0.1	80	72	97	S11
V-iPHP-1	0.1	60	72	99	S14
IM-iPHP-2	0.1	60	72	99	S32
PPS-mOH-Bn	0.1	50	72	78	S33
POF-PNA-Br	0.1	40	48	94.1	S34
VIP-Br	0.1	60 (40)	48 (72)	99 (99)	This work
TBB-Bpy@Salen-Co	1	80	6	95	S35
Al-iPOP-1	1	40	6	99	S36
SYSU-Zn@IL2	1	80	12	99	S37
Al-CPOP	0.1	120	24	95	S38
POF-Zn ²⁺ -I ⁻	1	60	8	92.2	S39
NHC-CAP-1(Zn ²⁺)	2	100	3	97	S40
$Zn-CIF2-C_2H_4$	2.5	120	4	98	S41

 Table S3 The detailed comparisons of catalytic activities over metal-free ionic polymers and IPs with metal sites or

 HBD groups for CO₂ fixation with ECH without any co-catalysts.*

* It should be pointed out that different catalysts were evaluated under different conditions. Thus, it is difficult to directly compare the activity between different catalytic systems. The represented catalytic activities using yields of the product in Table S3 should be considered in a reasonable comparison.

Fig. S7 FTIR of the fresh catalyst VIP-Br and the reused catalyst VIP-Br.

Fig. S8 SEM image of the reused catalyst VIP-Br.

Fig. S9 ¹H NMR spectrum of 4-(bromomethyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃): *δ*=5.00 (1H, CH), 4.68-4.61 (1H, CH₂), 4.40 (1H, CH₂), 3.66-3.61 (2H, CH₂).

Fig. S10 ¹H NMR spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃): *δ*=7.49-7.38 (5H, CH), 5.72 (1H, CH₂), 4.87-4.80(1H, CH₂), 4.37 (1H, CH₂).

Fig. S11 ¹H NMR spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃): *δ*=7.36 (2H, CH), 7.08 (1H, CH), 6.99–6.94 (2H, CH), 5.12-5.05 (1H, CH), 4.66 (1H, CH₂), 4.63-4.57 (1H, CH₂), 4.30 (1H, CH₂), 4.23-4.19 (1H, CH₂).

Fig. S12 ¹H NMR spectrum of allyloxymethyl-1,3-dioxolan-2-one (400 MHz, CDCl₃): *δ*=5.96-5.85 (1H, CH), 5.36–5.23 (2H, CH₂), 4.90–4.83 (1H, CH), 4.54 (1H, CH₂), 4.43 (1H, CH₂), 4.09 (2H, CH₂), 3.69 (2H, CH₂)

Fig. S13 ¹H NMR spectrum of 4-butyl-1,3-dioxolan-2-one (400 MHz, CDCl₃): δ=4.74 (1H, CH₂), 4.56 (1H, CH₂),
4.10 (1H, CH₂), 1.83 (2H, CH₂), 1.42 (4H, CH₂), 0.95 (3H, CH₃).

Fig. S14 ¹H NMR spectrum of 4-hexyl-1,3-dioxolan-2-one (400 MHz, CDCl₃): *δ*=4.73 (1H, CH₂), 4.55 (1H, CH₂), 4.12-4.07(1H, CH₂), 1.90-1.66 (2H, CH₂), 1.33 (8H, CH₂), 0.91 (3H, CH₃).

Fig. S15 ¹H NMR spectrum of 4-decyl-1,3-dioxolan-2-one (400 MHz, CDCl₃): δ=4.74 (1H, CH₂), 4.56 (1H, CH₂),
4.10 (1H, CH₂), 1.90-1.68 (2H, CH₂), 1.35-1.28 (16H, CH₂), 0.91 (3H, CH₃).

Fig. S16 ¹H NMR spectrum of 4-dodecyl-1,3-dioxolan-2-one (400 MHz, CDCl₃): *δ*=4.74 (1H, CH₂), 4.57 (1H, CH₂), 4.11 (1H, CH₂), 1.90-1.68 (2H, CH₂), 1.32 (16H, CH₂), 0.92 (3H, CH₃).

References

- S1 A. A. Rajaa and C. T. Yavuz, RSC Adv., 2014, 4, 59779-59784.
- S2 S. Hou, N. Chen, P. Zhang and S. Dai, Green Chem., 2019, 21, 1455-1460.
- S3 G. Das, T. Prakasam, S. Nuryyeva, D. S. Han, A. Abdel-Wahab, J.-C. Olsen, K. Polychronopoulou, C. Platas-Iglesias, F. Ravaux, M. Jouiad and A. Trabolsi, *J. Mater. Chem. A*, 2016, 4, 15361-15369.
- S4 Y. Leng, D. Lu, P. Jiang, C. Zhang, J. Zhao and W. Zhang, Catal. Commun., 2016,74, 99-103.
- S5 K. Kim, O. Buyukcakir and A. Coskun, RSC Adv., 2016, 6, 77406-77409.
- S6 X. Li, M. Zhou, J. Jia and Q. Jia, React. Funct. Polym., 2018, 126, 20-26.
- S7 J.-K. Tang, S.-B. Yu, C.-Z. Liu, H. Wang, D.-W. Zhang, Z.-T. Li, Asian J. Org. Chem., 2019, 8, 1912-1918.
- S8 G. Das, T. Skorjanc, S. K. Sharma, F. Gandará, M. Lusi, D. S. S. Rao, S. Vimala, S. K. Prasad, J. Raya, D. S. Han, R. Jagannathan, J.-C. Olsen and A. Trabolsi, *J. Am. Chem. Soc.*, 2017, **139**, 9558-9565.
- S9 L.-Z. Peng, P. Liu, Q.-Q. Cheng, W.-J. Hu, Y. A. Liu, J.-S. Li, B. Jiang, X.-S. Jia, H. Yang and K. Wen, *Chem. Commun.*, 2018, 54, 4433-4436.
- S10 G. Das, T. Skorjanc, S. K. Sharma, T. Prakasam, C. P. Iglesias, D. S. Han, J. Raya, J.-C. Olsen, R. Jagannathan and A. Trabolsi, *ChemNanoMat*, 2018, 4, 61-65.
- S11 G. Chen, X. Huang, Y. Zhang, M. Sun, J. Shen, R. Huang, M. Tong, Z. Long and X. Wang, *Chem. Commun.*, 2018, 54, 12174-12177.
- S12 C. Hua, B. Chan, A. Rawal, F. Tuna, D. Collison, J. M. Hook and D. M. D'Alessandro, J. Mater. Chem. C, 2016, 4, 2535-2544.
- S13 O. Buyukcakir, S. H. Je, D. S. Choi, S. N. Talapaneni, Y. Seo, Y. Jung, K. Polychronopoulouc and A. Coskun, *Chem. Commun.*, 2016, **52**, 934-937.
- S14 Y. Zhang, K. Liu, L. Wu, H. Zhong, N. Luo, Y. Zhu, M. Tong, Z. Long and G. Chen, ACS Sustainable Chem. Eng., 2019, 7, 16907-16916.
- S15 O. Buyukcakir, S. H. Je, S. N. Talapaneni, D. Kim and A. Coskun, ACS Appl. Mater. Interfaces, 2017, 9, 7209-7216.
- S16 X. Li, G. Chen and Q. Jia, Micropor. Mesopor. Mater., 2019, 279, 186-192.
- S17 R.A. Watile, K. M. Deshmukh, K. P. Dhake and B. M. Bhanage, Catal. Sci. Technol., 2012, 2, 1051-1055.
- S18 Y. Wang, J. Nie, C. Lu, F. Wang, C. Ma, Z. Chen and G. Yang, *Micropor. Mesopor. Mater.*, 2020, 292, 109751.
- S19 H. Zhong, Y. Su, X. Chen, X. Li, R. Wang, ChemSusChem, 2017, 10, 4855-4863.

- S20 J. Wang, J. Leong and Y. Zhang, Green Chem., 2014, 16, 4515-4519.
- S21 J. Wang, W. Sng, G. Yi and Y. Zhang, Chem. Commun., 2015, 51, 12076-12079.
- S22 Y. Chen, R. Luo, J. Bao, Q. Xu, J. Jiang, X. Zhou and H. Ji, J. Mater. Chem. A, 2018, 6, 9172-9182.
- S23 W. Zhang, Y. Mei, P. Wu, H.-H. Wu and M.-Y. He, Catal. Sci. Technol., 2019, 9, 1030-1038.
- S24 M. A. Ziaee, Y. Tang, H. Zhong, D. Tian and R. Wang, ACS Sustainable Chem. Eng., 2019, 7, 2380-2387.
- S25 T.-T. Liu, R. Xu, J.-D. Yi, J. Liang, X.-S. Wang, P.-C. Shi, Y.-B. Huang and R. Cao, *ChemCatChem*, 2018, 10, 2036-2040.
- S26 X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J. Wang, Chem. Sci., 2015, 6, 6916-6924.
- S27 W. Zhong, F. D. Bobbink, Z. Fei and P. J. Dyson, ChemSusChem, 2017, 10, 2728-2735.
- S28 Y. Xie, Q. Sun, Y. Fu, L. Song, J. Liang, X. Xu, H. Wang, J. Li, S. Tu, X. Lu and J. Li, J. Mater. Chem. A, 2017, 5, 25594-25600.
- S29 Z. Guo, Q. Jiang, Y. Shi, J. Li, X. Yang, W. Hou, Y. Zhou and J. Wang, ACS Catal., 2017, 7, 6770-6780.
- S30 J. Li, D. Jia, Z. Guo, Y. Liu, Y. Lyu, Y. Zhou and J. Wang, Green Chem., 2017, 19, 2675-2686.
- S31 Q. Sun, Y. Jin, B. Aguila, X. Meng, S. Ma and F.-S. Xiao, ChemSusChem, 2017, 10, 1160-1165.
- S32 G. Chen, Y. Zhang, J. Xu, X. Liu, K. Liu, M. Tong and Z. Long, Chem. Eng. J., 2020, 381, 122765.
- S33 K. Hu, Y. Tang, J. Cui, Q. Gong, C. Hu, S. Wang, K. Dong, X. Meng, Q. Sun and F.-S. Xiao, *Chem. Commun.*, 2019, 55, 9180-9183.
- S34 D. Ma, K. Liu, J. Li and Z. Shi, ACS Sustainable Chem. Eng., 2018, 6, 15050-15055.
- S35 Y. Leng, D. Lu, C. Zhang, P. Jiang, W. Zhang and J. Wang, Chem. Eur. J., 2016, 22, 8368-8375.
- S36 Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou and H. Ji, *ChemSusChem*, 2017, 10, 2534-2541.
- S37 Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou and H. Ji, ACS Sustainable Chem. Eng., 2018, 6, 1074-1082.
- S38 T.-T. Liu, Jun Liang, Y.-B. Huang and R. Cao, Chem. Commun., 2016, 52, 13288-13291.
- S39 D. Ma, J. Li, K. Liu, B. Li, C. Li and Z. Shi, Green Chem., 2018, 20, 5285-5291.
- S40 P. Puthiaraj, S. Ravi, K. Yu and W.-S. Ahn, Appl. Catal. B, 2019, 251, 195-205.
- S41 J. Liu, G. Zhao, O. Cheung, L. Jia, Z. Sun and S. Zhang, Chem. Eur. J., 2019, 25, 9052-9059.