Supporting Information for:

Continuous-Flow Synthesis of Dimethyl Fumarate:

a Powerful Small Molecule on the Treatment of Psoriasis and Multiple Sclerosis

Marcelo T. Lima ^{a,b}, Fernanda G. Finelli^b, Alline V. B. de Oliveira ^c, Vinicius Kartnaller^c,

João F. Cajaiba^c, Raquel A. C. Leão ^a, Rodrigo O. M. A. de Souza ^a

a – Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, 21941909, Brazil;

b – Instituto de Pesquisa em Produtos Naturais, Federal University of Rio de Janeiro, 21941909, Brazil;

c- Núcleo de Desenvolvimento de Processos e Análises Químicas em Tempo Real (NQTR), Chemistry Institute, Federal University of Rio de Janeiro, 21941909, Brazil;

Keywords: continuous-flow, dimethyl fumarate, cascade reactions, api synthesis;

*souzarod21@gmail.com

CONTENTS ESPECTRAL DATA FOR COMPOUNDS:

	Experimer	ntal Section	o n			S1		
1	EXPERIM	EXPERIMENTAL PROCEDURE						
1.1	Batch synthes	sis of dimet	hyl fumarate from fumaric a	cid:		S2		
1.2	Batch synthes	sis of dimet	hyl fumarate from maleic an	hydride:		S2		
2.	STUDY	OF	OPTIMIZATION	IN	BATCH	S3		
2.1	From the est		of fumaric acid			S3-S4		
2.2	• 1		from the esterification o		e	S4-S5		
3.		batch CHOMATOGRAPHIC ANALYSIS						
3.1	Esterificatio	n of fumar	ic acid			S5		
3.1	Esterificatio	n of maleio	c anhydride			S6		
4.	SPECTRAL D	DATA				S6		
4.1	¹ H-NMR spec	e tra: Dimeth	nyl fumarate			S6		

1. EXPERIMENTAL SECTION

1.1 Batch synthesis of dimethyl fumarate from fumaric acid:

To a 125mL flask was added 5.0423 g (43.4 mmol) and 80 mL of methanol, and heated to 55 ° C. Then 0.587 mL of H_2SO_4 was added, the mixture was stirred for 120 min. After this time, reaction was cooled to room temperature and allowed to crystallize under stirring for 8 h. The formed solid was filtered off and recrystallized with a 20 % methanol: water solution, filtered and dried at room temperature to give a crystalline solid in 83 % yield.

1.2 Batch synthesis of dimethyl fumarate from maleic anhydride:

To a 50 mL flask was added 10.0469 g (102.5 mmol) and 50 mL methanol, and heated to 40 ° C. Then 0.3130 g (4.0 mmol) of maleic anhydride was added under constant stirring. The conditions were maintained for 30 min. Following 0.815 mL H₂SO₄ was added, and the temperature was raised to 55 °C, the mixture was stirred for 120 min. After that, was cooled at room temperature, crystallization go on under stirring for 8 h. The solid formed was filtered and recrystallized with a 20 % methanol : water solution, filtered and dried at room temperature to give a 65 % yield of crystalline solid.

2. STUDY OF OPTIMIZATION

2.1 From the esterification of fumaric acid in batch

$$HO \underbrace{\bigcup_{OH_2}^{O} + 2H_3COH}_{OH_2} + 2H_3COH} \underbrace{\frac{H_2SO_4conc\ cat.}{T(\ ^\circ C)\ ,\ t\ (min)}}_{O\ DMF} MeO \underbrace{\bigcup_{OMe\ +\ HO}_{OMe\ +\ HO}}_{O\ MF} OMe$$

Below is presented the results of parameters optimization (temperature, amount of catalyst and substrate) from the esterification of fumaric acid:

T	55 °C		45 °C		35 °C	
t (min.)	MF (%)	DMF (%)	MF (%)	DMF (%)	MF (%)	DMF (%)
5	62.4	3.6	35.3	2.4	0	0
10	54.4	5.9	44.2	5.5	0	0
15	47.0	5.7	52.0	9.0	2.46	0
20	52.7	8.0	53.4	9.6	7.22	0
30	55.0	11.6	59.8	17.1	4.45	0

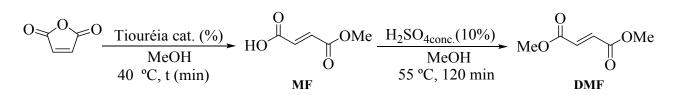
Table S1: Results from the temperature study.

Experimental Conditions: Fumaric acid 0.81 M, 0.081 M of H₂SO_{4conc} (25 mol%) in methanol, 30 min at 55 °C. *Analyze Conditions*: conversion calculated at GC-MS, oven programming, 60 °C for 1 min, heated for 7 °C/min until 170 °C and maintained 1 min.

Cat. conc.	5 %	mol	7 %	mol	10 % mol		
t (min.)	MF (%)	DMF (%)	MF (%)	DMF (%)	MF (%)	DMF (%)	
5	34.9	2.2	33.8	2.5	28.8	3.1	
10	33.6	6.5	40.4	4.7	37.2	4.3	
15	41.5	5.5	46.2	8.1	44.0	7.2	
20	47.1	7.1	50.6	9.6	47.7	10.3	
30	51.1	10.3	59.1	15.0	56.3	15.1	

Table S2: Results from the catalyst study.

Experimental Conditions: Fumaric acid 0.81 M, H₂SO_{4conc} as catalyst in methanol, 30 min at 55 °C. *Analyze Conditions*: conversion calculated at GC-MS, oven programming, 60 °C for 1 min, heated for 7 °C/min until 170 °C and maintained 1 min.


Table S3: Results from the fumaric acid concentration study.

Fumaric Ac.	54 mmol		81 mmol		
Conc. t (min.)	MF (%)	DMF (%)	MF (%)	DMF (%)	
15	39.0	60.3	27.7	72.4	
30	22.3	77.7	21.5	78.5	
60	11.8	88.1	13.2	86.8	
90	3.6	96.4	4.6	95.4	

120	2.8	97.2	2.0	98.0
150	0	100	0	100
180	0	100	0	100

Experimental Conditions: Fumaric acid, 10 mol % of $H_2SO_{4conc.}$ as catalyst in methanol, 30 min at 55 °C. *Analyze Conditions*: conversion calculated at GC-MS, oven programming, 60°C for 1 min, heated for 7 °C/min until 170 °C and maintained 1 min.

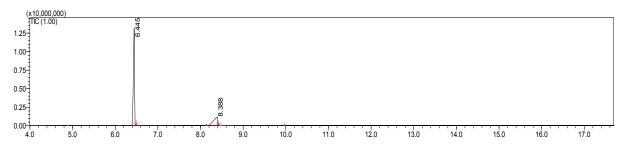
2.2 Study of optimization from the esterification of maleic anhydride in batch

Time (min)	DMF (%)	MF (%)	Anhydride(%)
60	1.3	98.0	0.7
120	1.6	96.5	1.9
180	2.0	94.6	3.4
240	2.2	95.6	2.1
300	2.5	95.4	2.1
360	2.9	94.9	2.1

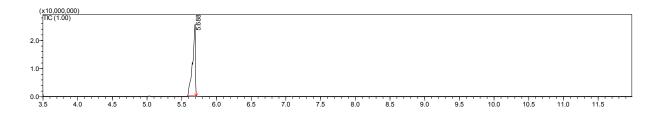
Experimental Conditions: Anhydride 2.0 M, 0.1 M of thiourea (5 mol%) in methanol, at 40 °C. *Analyze Conditions*: conversion calculated at GC-MS, oven programming, 60 °C for 1 min, heated for 15 °C/min until 118 °C, heated for 20 °C/min until 150 °C, heated for 15 °C/min until 180 °C and maintained 1 min.

Table S5: Results from the catalyst study with time variation.

Cat.	5%			10%			15%		
Time (min)	DMF (%)	MF (%)	Anhydride (%)	DMF (%)	MF (%)	Anhydride (%)	DMF (%)	MF (%)	Anhydride (%)
30	0.6	98.3	1.1	0.4	98.4	1.2	0.4	97.6	2.0
60	0.6	98.3	1.1	0.4	98.4	1.3	0.4	97.7	1.9
75	0.7	98.2	1.1	0.4	97.8	1.9	0.4	97.6	2.0
90	0.7	98.1	1.2	0.4	97.6	2.0	0.4	97.7	1.9
120	0.8	98.6	0.7	0.4	97.8	1.7	0.4	97.4	2.1


Experimental Conditions: Anhydride 2.0 M, thiourea as catalyst in methanol, at 40 °C. *Analyze Conditions*: conversion calculated at GC-MS, oven programming, 60 °C for 1 min, heated for 15 °C/min until 118 °C, heated for 20 °C/min until 150 °C, heated for 15 °C/min until 180 °C and maintained 1 min.

Time (min)	DMF (%)	MF (%)	Anhydride (%)
30	0.2	98.4	1.4
90	95.0	3.7	0.0
150	98.6	0.9	0.0


Table S6: Results from the cascade reaction.

Experimental Conditions: Anhydride 2.0 M, 0.1 M of thiourea (5 mol%) in methanol, at 40 °C, after 30 min the H_2SO_4 was added and the temperature was raised to 55 °C. *Analyze Conditions*: conversion calculated at GC-MS; oven programming, 60 °C for 2 min, heated for 15 °C/min until 80 °C, heated for 10 °C/min until 135 °C, heated for 20 °C/min until 140 °C and maintained 1 min, heated for 20 °C/min until 180 °C and maintained 1 min.

3. CHOMATOGRAPHIC ANALYSIS

Figure S1: Chromatographic profile obtained by GC-MS after the optimized batch conditions. Retention time: 6.4 min –Dimethyl fumarate, 8.3 min – Methyl fumarate; *Experimental Conditions*: Fumaric acid 0.81 M, 10 mol% of $H_2SO_{4conc.}$ in methanol, 2 h at 55 °C. *Analyze Conditions*: oven programming, 60 °C for 1 min, heated for 7 °C/min until 170 °C and maintained 1 min.

Figure S2: Chromatographic profile obtained by GC-MS after the optimized batch conditions for anhydride. Retention time: 6.4 min –Dimethyl fumarate; *Experimental Conditions*: Anhydride 2.0 M, 0.1 M of thiourea (5 mol%) thiourea in methanol, at 40 °C, after 30 min the H₂SO₄ was added and the temperature was raised to 55°C. *Analyze Conditions*: conversion calculated at GC-MS; oven programming, 60 °C for 2 min, heated for 15 °C/min until 80 °C, heated for 10 °C/min until 135 °C, heated for 20 °C/min until 140 °C and maintained 1 min, heated for 20 °C/min until 180 °C and maintained 1 min.

4. ESPECTRAL DATA

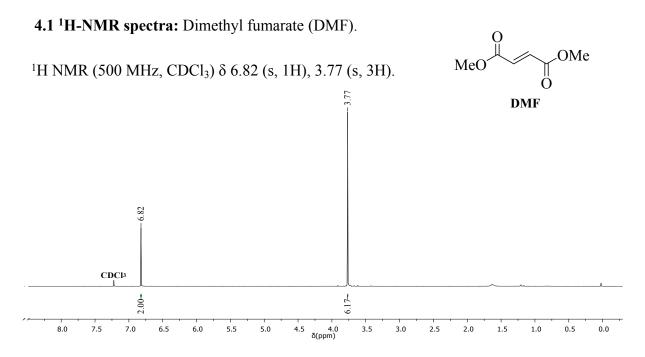
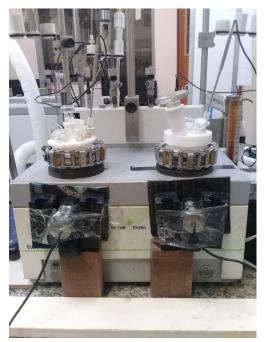
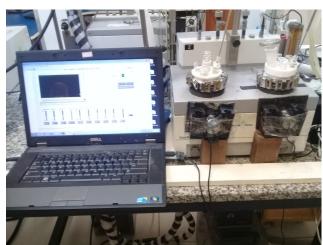




Figure S3: Recrystallized Dimethyl Fumarate (DMF).

5. Pictures from the RGB system used for crystallization:

