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1 Theoretical derivation 

1.1 Inter-ion isotope effects 

For the compound RCl4 (Figure 1), the probability of a product isotopologue possessing t 37Cl 

atom(s) generated from the molecular ion by losing two Cl atoms is: 
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Then the probabilities of the product isotopologues produced from the molecular isotopologues 

can be obtained (Figure 1). We hypothesize the molar amounts of the molecular isotopologues are 

x0, x1, x2, x3 and x4, and the mass spectrometry (MS) signal intensities of the product isotopologues 

are I1, I2 and I3; We further define the proportionality constant of the molar amounts of the ions 

relative to their MS signal intensities as d, and then obtain the following equations: 
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Letting Eq (S1) × 2 + Eq (S2), we have 
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And letting Eq (S3) × 2 + Eq (S2), we have 
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Further letting Eq (S5) / Eq (S4), we have 
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Accordingly, by extrapolating Eq (3), we summarize a general equation as: 
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where n is the number of Cl atoms of a molecular ion; i is the number of 37Cl atom(s) of an 

molecular isotopologue; r is the number of the lost Cl atom(s); t is the number of 37Cl atom(s) of a 

product isotopologue derived from the molecular ion; xi is the molar amount of molecular 

isotopologue i; 
n r t

n iC  

 is a combination formula alternative to  n i

n r t



 
, which is analogous to other 

relevant expressions in this text. Eq (4) can be mathematically proved as below. We define 
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where Rpar and Rpro are the isotope ratios of a parent ion and its product ion, respectively. 

Proof: 

par proR R                                    

Proof process: 

Functions F (i, n) and G (i, n) were defined as: 
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                                                 (S9) 

F (i, n) simplifies to 

                                 (S10) 

We can obtain the following equation according to combination principles: 

                                                          (S11) 

And G (i, n) simplifies to 

                             (S12) 

Similarly, we can obtain the following equation: 
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Substituting Eqs (S10-S13) into Eq (S6), we have 
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Thus, par proR R is proven.   
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1.2 Intra-ion isotope effects 

The equilibrium constant between the cleavages of bond A2 and bond A3 can be expressed as: 
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And that between the cleavages of bond B3 and bond B2 can be expressed as: 
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Therefore, a bK K . 

Similarly, the equilibrium constants (K2 and K3) between the cleavages of bond A2 and bond B2, 

and bond A3 and bond B3 can be expressed as: 
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The isotope ratio of the parent ion derived from MI2 and MI3 (Rpar(a2a3)) is  
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And the isotope ratio of the product ion generated by MI2 and MI3 (Rpro(a2a3)) is  
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According to Eqs (6-9), we have 
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2 3aK K K                                                               (S17) 

Substituting Eq (S15) and Eq (S16) into Eq (11), we have 
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Substituting Eq (S17) into Eq (S18), gives 
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Letting 3K x  and
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and further obtain 
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which simplifies to 
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Because a2 approximates to or equals a3, thus letting
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When 0
dy

dx
 , we have ax K  . Since 0x  , thus ax K . Because 1aK  , then the function 

2 2( ) (1 )a a af x K x K K    has a convex shape, and is larger than zero ( ( ) 0f x  ) at [0, )ax K , 
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and lower than zero ( ( ) 0f x  ) at ( , )ax K  . Therefore, the function ( )f x is monotonically 

increasing at [0, )ax K , and monotonically decreasing at ( , )ax K  , and has a maximum at

ax K . When 3 0K  , 
2 3( )pro a aIR has the minimum: 
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2 3( ) pro a a aR K                                                              (13) 

When K3 approaches infinity, Rpro(a2a3) has the following limit:  
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Then for 3 (0, )K   , we have 

2 3( )1 pro a a aIR K                                                            (14) 

Hence, the isotope ratio of a product ion exceeds that of its parent ion when intra-ion isotope effects 

are present. The physicochemical meanings for the scenarios of 3 0K  , 3K   and 3 aK K  

are as follows. 3 0K  : the bonds A2 and A3 are completely broken, while the bonds B2 and B3 

are completely unbroken. In this scenario, the isotope ratio of the product ion is equal to that of its 

parent ion, indicating no intra-ion isotope effect taking place. This scenario is probably present for 

asymmetric molecules. If the difference in critical energies between the asymmetric C-Cl bonds 

are large enough, so that a bond can be cleaved and another completely non-cleaved or with a 
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negligible fraction cleaved. 3K  : this scenario is equivalent to that of 3 0K  . 3 aK K : if 

the bonds A2, B2, A3 and B3 are structurally identical, then all these bonds are partially broken and 

more amounts of the C-35Cl bonds are broken than the C-35Cl bonds, indicating the occurrence of 

intra-ion isotope effects. For other scenarios, intra-ion isotope effects can occur, and the isotope 

ratio of the product ion is higher than 1 but lower than aK . 

1.2.1 Impacts on apparent isotope ratio of a product ion  

According to the reaction pathways illustrated in Figure 3 and Figure 4, the chlorine isotope ratio 

derived from all the isotopologues of the product ion (apparent isotope ratio, Rpro(app)) of the 

imaginary compound is 
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And the isotope ratio of the parent ion involving MI1, MI2, MI3 and MI4 (Rpar) is 
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If the bonds A2, B2, A3 and B3 are structurally identical, then we have 2 3a a , and Eq (S27) can 

thus simplify to 
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As
2 3( ) pro a a aR K , we have  
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where 37 Cl
A represents the abundance of 37Cl; 35 Cl

A refers to the abundance of 35Cl; 37 35Cl Cl
A

denotes the total abundance of 37Cl and 35Cl. Substituting Eq (S28) and Eq (S29) into Eq (15), 

yields 
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Then, we compare ( )pro appR with parR . Letting 1aK  , we obtain 
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And letting aK x , we have 
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and further obtain 
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Therefore, y is a monotonically increasing function. Additionally, as ( )a af K K x  is 

monotonically increasing, then the following function 
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is monotonically increasing. When 1aK  , we have 
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Accordingly, when 1aK  , we obtain 
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Thus, the apparent isotope ratio of the product ion is always higher than that of the parent ion, only 

if 1aK  . 

For asymmetric molecules, letting
2 3( ) pro a a uR K , then we have 1 u aK K  . Substituting 

2 3( ) pro a a uR K  into Eq (15), leads to 



Page 13 

2 3 4

( )

2 3 1

( )
1

1
( )

1

 




 


u

u
pro app

u

K
a a a

K
R

a a a
K

                                                (S35) 

Defining function 
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we further obtain 
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when 0 ax K  , the function ( )uK x is monotonically increasing, thus the function 

( ) [ ( )]u uy f K f K x   is monotonically increasing. When ax K , the function ( )uK x is 
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When 0x  , then
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namely, ( ) pro app parR R . When x   , the limit of Ku can be given as 
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 

 
                                              (S41) 

Hence, the limit of the function y is 

2 3
2 3 4

2 3 4 4

1 1
2 3

2 3 1 2 3 1 1
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   
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    

 

                   (S42) 

in other words, ( ) pro app parR R . For general scenarios, as 

2 3

2

( ) 2

2

2

 
 

 

a a
u pro a a

a

x K x K
K R

x x K
                                                (S43) 

the ( )pro appR can be expressed as 

2 3 4
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2 3 1
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1

1
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3 3
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2
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u

a

K K K K
K

K K K

 


 
)                     (20)                                          

For (0, )x  , we have the following inequation: 
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2 3 4

( )

2 3 1

( )
1

1
( )

1

 


 

 


a

a

par pro app

a

K
a a a

K
R R

a a a
K

                                          (21)  
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1.3 Impacts on isotopologue distribution and implications to isotope-ratio calculation 

schemes 

1.3.1 Case of symmetric compounds 

1.3.1.1 Perspective from the dechlorinated (unobserved) molecular ion 

If the dechlorinated molecular isotopologues comply with binomial distribution, then we get 

'
'

'

11 

 
 

i

i

Ii
R

n i I
                                                          (S44) 

where R’ is the chlorine isotope ratio of the dechlorinated molecular ion, and I’ is the abundance 

of the dechlorinated molecular ion. The relative abundance of the dechlorinated molecular 

isotopologue to initial molecular isotopologue before dechlorination (c’i) is expressed as: 

' ' '' '
' ' ' ' '1 11 1 2 1
1 2 1' ' ' ' '

(1 1)0 (2 1)0 ( 1)0 ( 1)0 0

, ... ... ,  


   

    i n n
i n n

i n n

I I II I
c c c c c

I I I I I
                        (S45) 

According to Eq (S44) and Eq (S45), the isotope ratio (R’) calculated with a random pair of 

neighboring isotopologues (i-1 and i) is 

' '
' 1 0

' '

( 1)0 1





 
 

i i

i i

c I i
R

c I n i
                                                      (S46) 

which transforms to 

' '
'0

0' '

( 1)0 11 

  
 

i i

i i

I ci
R R

I n i c
                                                  (S47) 

Similarly for the pair of isotopologues i and i+1, we obtain 

' '
( 1)0 '1

' '

0 2

1 




  



i i
all

i i

I ci
R R

I n i c
                                                   (S48) 
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If the isotopologues of the dechlorinated molecular ion comply with binomial distribution, then 

the isotope ratios calculated using random pairs of neighboring isotopologues are equal. Therefore, 

for any three adjacent isotopologues, we have 

' '
' '1

' '

1 1 1



  

 i i

i i

c c
R R

c c
                                                          (S49) 

which simplifies to 

' '

1

' '

1 1 1



  

i i

i i

c c

c c
                                                              (S50) 

Hence, the progression (c’1, c’2 … c’i, c’i+1 … c’n, c’n+1) is geometric: 

' ' ' 1

1

 i

ic c q                                                                (S51) 

of which the common ratio (q’) is  

''
' 12

' '

1

  i

i

cc
q

c c
                                                             (S52) 

Due to inter-ion isotope effects, lighter molecular isotopologues are more liable to be dechlorinated 

compared with heavier ones, the common ratio is thus less than 1 (q’ < 1). We hypothesize n → ∞, 

then get the limit of c’i: 

' ' ' 1

1lim lim 0

 
 i

i
i n i n

c c q                                                        (S53) 

which contradicts the reality, because it is impossible that all the amounts of heavier isotopologues 

are completely non-dechlorinated. Therefore, in fact, the progression (c’1, c’2 … c’i, c’i+1 … c’n, 

c’n+1) is non-geometric. We therefore conclude that the dechlorinated molecular isotopologues do 

not comply with binomial distribution neither. 

1.3.2 Case of asymmetric compounds 
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We list three random adjacent pairs of mergeable similar terms of  f n as follows: 

1 1 ( 1) 1

1 1 0 0       

  i n i i

i np C                                                   (S54) 

1

1 0 0    

 i n i i

i np C                                                        (S55) 

1

1 0 0    

 i n i i

i np C                                                        (S56) 

1 1 ( 1) 1

1 1 0 0       

  i n i i

i np C                                                    (S57) 

1 1 ( 1) 1

1 1 0 0       

  i n i i

i np C                                                   (S58) 

2 1 ( 2) 2

2 1 0 0       

  i n i i

i np C                                                    (S59) 

where pi refers to 
1

1 0 0  



i n i i

nC . Then the isotope ratios (Ri+1 and Ri+2) calculated with pairs of 

neighboring isotopologues are 

1 1 1 ( 1) 1

1 1 0 0 1 0 0
1 1 1 ( 1) 1 1
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1 1 ( 1) 1 2 1 ( 2) 2
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2 1 1 1 ( 1) 1
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which simplify and transform to 
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2
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1 2
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             (S63) 

Then the proof of 1 2 i iR R  is equivalent to proving 

1 1 2
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which is further equivalent to 

0 0 0 0

0 0 0 0
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Letting 
0

0




 k and substituting it into Ineq (S65), yields 

1 1

1 2( 1 ) ( 1) ( 1)( 1 1) ( 2)( 1)

1 1 1
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which simplifies to 

( 1) ( 1) ( 2) ( 2)

( ) ( 1) ( 1)

k i n i k i n i

ki n i k i n i
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     
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This inequation can be transformed to 

( 1) ( 1) [( 1) 1] [ ( 1) 1]

( ) ( 1) [ ( 1)]

k i n i k i n i

ki n i k i n i

         


     
                                 (S68) 

We define a function H (i) as 
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( 1) ( 1)
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and further obtain 
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2 2
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When 1k  , we obtain
( )

0
dH i

di
which indicates that H (i) always equals a constant ( ( ) 1H i ).  

Thus, we have 

( 1) ( 1) ( 2) ( 2)
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and  

1 2 i iR R                                                                 (S72) 

Due to inter-ion isotope effects, the isotope ratio of the remaining Cl atoms on the specified 

position increases, and therefore we have 

0

0



 
                                                                    (S73) 

which leads to  

0

0

1



 k                                                                (S74) 

Hence, we have 

H( )
0

d i

di
                                                                (S75) 
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Accordingly, the function H (i) monotonically decreases in the definitional domain. Therefore, the 

following inequation ( ) ( 1) H i H i is obtained, that is, 

( 1) ( 1) [( 1) 1] [ ( 1) 1]

( ) ( 1) [ ( 1)]

k i n i k i n i

ki n i k i n i

         


     
                                  (S76) 

which is equivalent to 

1 2 i iR R   ( 0 , 1 , 2 . . . )i n                                                       (40)  
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2 Experimental section 

2.1 Chemicals and materials 

Reference standards of tetrachloroethylene (PCE, 99.0%) and trichloroethylene (TCE, 99.5%) of 

high performance liquid chromatography (HPLC) grade were bought from Dr. Ehrenstorfer 

(Augsburg, Germany, manufacturer-1), and the analytical-reagent grade PCE (99.0%) and TCE 

(99.0%) were obtained from Tianjin Fuyu Chemical Co. Ltd. (Tianjin, China, manufacturer-2). 

The standards were accurately weighed and dissolved in n-hexane to prepare stock solutions at 1.0 

mg/mL. These stock solutions were further diluted with n-hexane to prepare cocktailed working 

solutions containing both PCE and TCE standards from individual manufacturers at 1.0 μg/mL. 

All the standard solutions were stored at −20 oC condition prior to use. Hexane was of HPLC grade 

and bought from Merck Corp. (Darmstadt, Germany). Perfluorotributylamine (the reference 

standard for calibrating HRMS) was provided by Sigma-Aldrich LLC. (St. Louis, USA). 

2.2 Instrumental measurement 

The working solutions were directly analyzed by gas chromatography-high resolution mass 

spectrometry (GC-HRMS). The GC-HRMS system comprised dual gas chromatographers (Trace-

GC-Ultra) coupled with a double focus magnetic-sector high resolution MS and a TriPlus auto-

sampler (GC-DFS-HRMS, Thermo-Fisher Scientific, Bremen, Germany). The chromatographic 

separation was performed with a DB-5MS capillary column (60 m × 0.25 mm, 0.25 µm thickness, 

J&W Scientific, USA). Details of the temperature programs are tabulated in Table S-1.  

The working conditions and parameters of the HRMS system are provided as follows: electron 

ionization source operated in positive mode (EI+) was used; EI energy was set at 45 eV; ionization 

source was maintained at 250 oC; filament current of EI source was 0.8 mA; multiple ion detection 

(MID) mode was used for data acquisition; dwell time of each isotopologue ion was about 20 ms; 

mass resolution was ≥ 10000 (5% peak-valley definition) and the detection accuracy was ± 0.001 

u. The HRMS system was calibrated in real time with perfluorotributylamine during MID 

operation. 

Structures of PCE and TCE were sketched by ChemDraw (Ultra 7.0, Cambridgesoft), and the exact 
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masses of the molecular isotopologues were calculated with mass accuracy of 0.00001 u. Only 

chlorine isotopologues were considered. For a compound containing n Cl atoms, the complete 

isotopologues (n + 1) were chosen. The mass-to-charge ratios (m/z) of ions were obtained by 

subtracting the mass of an electron from the exact mass of each isotopologue. The m/z values were 

imported into the MID module for data acquisition. The details of PCE and TCE in terms of 

retention times, isotopologue formulas, exact masses, exact m/z values, and isotopologue 

theoretical relative abundances are provided in Table S-2. 

2.3 Data processing 

Chlorine isotope ratio (R) was calculated with 

0
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


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Comp Iso n
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n i I

                                                       (23) 

and  

_
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 
 

i
IP Iso

i

Ii
R

n i I
                                                           (22)

                    

where n is the number of Cl atoms of a molecule; i is the number of 37Cl atoms of a molecular 

isotopologue; Ii is the MS signal intensity of the molecular isotopologue i; RComp_Iso refers to the 

isotope ratio calculated with the complete molecular isotopologue scheme; RIP_Iso: denotes the 

isotope ratio calculated with the molecular isotopologue-pair scheme. It is noteworthy that the 

complete molecular isotopologue scheme applied in our study is different from the previously 

reported “complete ion method” which involves both molecular and fragmental ions.1  

All the measured chlorine isotope ratios in this study were raw values without being calibrated to 

the scale of the Standard Mean Ocean Chlorine (SMOC) due to unavailability of the external 

isotopic standards with known chlorine isotope compositions and identical structures as PCE and 

TCE. Since all the isotopologues of each compound were simultaneously monitored by HRMS, 

therefore the measured raw isotope ratios were accurate relative isotope ratios, viz. it was indeed 
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real for the observed differences among the isotope ratios calculated with different pairs of 

neighboring isotopologues by the molecular isotopologue-pair scheme and between those 

calculated by different schemes (i.e., the molecular isotopologue-pair scheme and the complete 

molecular isotopologue scheme) for individual compounds. As a result, the lack of calibration of 

the measured isotope ratios to the SMOC scale cannot affect the conclusions of this study. The 

average MS signal intensity of each isotopologue within the whole chromatographic peak was 

extracted and used for isotope ratio calculation. Background subtraction was performed before 

exporting MS signal intensity by subtracting intensities of the baseline regions adjacent to the 

corresponding chromatographic peak. Data from five or six replicated injections were applied to 

calculation of each mean isotope ratio along with the corresponding standard deviation (1σ).  
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Tables 

Table S-1. Names, structures, CAS number, concentrations and chromatographic separation 

conditions of tetrachloroethylene (PCE) and trichloroethylene (TCE). 

Compound Abbreviation Structure CAS No. Temperature 

program 

Concentration 

(μg/mL) 

Injection 

solvent 

Tetrachloroethylene PCE Cl

Cl Cl

Cl

 

127-18-4 Held at 40 ºC for 

2 min, ramped to 

65 ºC at 2 ºC/min, 

then ramped to 

300 ºC at 40 

ºC/min, held for 1 

min (Inlet: 260 

oC; Transfer line: 

280 oC; flow rate: 

1.0 mL/min) 

1.0 Hexane 

Trichloroethylene TCE Cl

Cl H

Cl

 

79-01-6 

 

 

 

 

 

 

 

 

Table S-2. Retention times, chemical formulas, isotopologue formulas, m/z values, and 

isotopologue theoretical relative abundances of PCE and TCE. 

Compound Retention time 

(min) 

Ion type Formula Isotopologue 

formula 

m/z value (u) Theoretical relative 

abundance 

PCE 12.55 Molecular C2Cl4 C2
35Cl4 163.87486 78.19 

    C2
35Cl3

37Cl 165.87191 100.00 
    C2

35Cl2
37Cl2 167.86896 47.98 

    C2
35Cl37Cl3 169.86601 10.23 

    C2
37Cl4 171.86306 0.82 

       

TCE 8.38 Molecular C2HCl3 C2H35Cl3 129.91383 100.00 
    C2H35Cl2

37Cl 131.91088 95.90 
 

   C2H35Cl37Cl2 133.90793 30.70 

    C2H37Cl3 135.90498 3.30 

 


